如何优化你的图像分类模型效果?

栏目: 数据库 · 发布时间: 5年前

内容简介:本文为 AI 研习社编译的技术博客,原标题 :Boost your Image Classification Model

如何优化你的图像分类模型效果?

本文为 AI 研习社编译的技术博客,原标题 :

Boost your Image Classification Model

作者 |  Aditya Mishra

翻译 | MichaelChen      编辑 | 邓普斯•杰弗、咩咩咩鱼

原文链接:

https://towardsdatascience.com/boost-your-image-classifier-e1cc7a56b59c

注:本文的相关链接请访问文末【阅读原文】

图像分类是一个认为几乎解决了的问题。有趣的是,你必须竭尽所能来提升额外的1%的准确率。当我参加“ Intel Scene Classification Challenge hosted by Analytics Vidhya(由Analytics Vidhya主办的英特尔场景分类挑战)”我非常喜欢这次比赛,因为我尝试从我的深度学习模型中榨干所有的潜力。下面的技术通常是可以应用到手头上的任何图像分类问题中去。

    问题

下面的问题是把给定的图片分类到下面的6个类别中去。

如何优化你的图像分类模型效果?

数据类别

数据中包含25,000张自然风景的图片,这些图片来自世界各地。

    渐进的(图片)尺寸调整

当训练CNN模型的时候,从小到大的线性调整图片尺寸是一项技术。渐进的尺寸调整在很赞的fastai课程中被描述为:程序员的深度学习实践。一种不错的方式是先用小的尺寸,如64 x 64进行训练,再用这个模型的参数,在128 x 128尺寸上进行训练,如此以往。每个较大的模型都在其体系结构中包含以前较小的模型层和权重。

如何优化你的图像分类模型效果?

渐进的尺寸调整

    FastAI

如何优化你的图像分类模型效果?

fastai库是一个强大的深度学习库。如果fastai团队找到了一篇很感兴趣的论文,他们会在不同的数据集上进行测试,并实现调参。一旦成功,就会被合并到他们的库,并且对它的用户开放阅读。这个库包含了很多内置的先进的技巧。基于pytorch,fastai对于大多数任务都有很好的默认参数。部分技巧包括:

  1. 周期性学习率

  2. 一个周期的学习

  3. 结构化数据的深度学习

    完整的权重初始化

在查看可用的标准数据集时,我偶然发现了Place365数据集。Place365数据集包含365种风景分类的1,800,000张图片。本次挑战赛提供的数据集与这个数据集很相似,所以在这个数据集训练的模型,具有一些学习的特征,与我们分类的问题是相关的。由于我们的问题中的类别是Place365数据集的子集,所以我使用了一个用Place365权重初始化的ResNet50模型。

这个模型的权重在“pytorch weights”中提供。下面使用的实用函数帮助我们正确地将数据加载到fastai的CNN学习器中。

如何优化你的图像分类模型效果?

    混合增强

混合增强是一种通过对已有的两幅图像进行加权线性插值,来形成新图像的增强方法。我们取两张图像,然后使用这些图像的张量进行线性组合。

如何优化你的图像分类模型效果?

混合增强

λ是服从beta分布的随机采样。虽然论文的作者建议使用 λ=0.4,但是fastai的库默认值设为0.1。

如何优化你的图像分类模型效果?

fastai中的混合增强

    学习率调优

学习率是训练神经网络中最重要的超参数之一。fastai有一种方法来找出合适的初始学习速率。这个技术被称作循环学习率,我们用较低的学习率进行试验,并以指数形式增加,记录整个过程的损失。然后我们根据学习率绘制损失曲线,并选择损失值最陡峭处的学习率。

如何优化你的图像分类模型效果?

fastai中的LR Ffinder

如何优化你的图像分类模型效果?

在学习率为1e-06时,损失最陡峭

这个库还为我们自动的处理带有重新启动的随机梯度下降(SGDR)。在SGDR中,学习率在每次迭代开始时会重新设置为原始选择的数值,这些数值会随着迭代减小,就像余弦退火一样。这么做的主要收益是,由于学习率在每次迭代的开始可以重置,因此学习器能够跳出局部极小值或鞍点。

如何优化你的图像分类模型效果?

fastai中带有重启的随机梯度下降

    通用对抗网络

生成式对抗网络(GAN是Generative Adversarial Networks的缩写)在2014年被Ian Goodfellow提出,GANs是由两个网络组成的深层神经网络结构,它们相互竞争。 GANs可以模拟任何数据分布。他们可以学习生成类似原始数据的数据,而且可以是任何领域——图像、语音、文本等等。我们使用fastai的Wasserstein GAN的实现来生成更多的训练数据。

GANs包括训练两个神经网络,一个被称为生成器,它生成新的数据实例,另一个被称为判别器,它对它们进行真实性评估,它决定每个数据实例是否属于实际的训练数据集。你可以从这个链接查阅更多。

https://github.com/fastai/course-v3/blob/master/nbs/dl1/lesson7-wgan.ipynb

如何优化你的图像分类模型效果?

GAN生成样本图片

    去除混淆的图像

训练神经网络的第一步不是写任何的神经网络的代码,而是彻底观察你的数据。这一步至关重要。我喜欢花费大量的时间(以小时为单位)浏览数千张样例,理解他们的分布,寻找他们的模式。——Andrej Karpathy

正如Andrej Karpathy所说,“数据调查”是一个重要的一步。关于数据调查,我发现很多数据包含不少于两种的类别。

方法-1

使用之前训练的模型,我对整个训练数据进行了预测。然后丢弃概率得分超过0.9但是预测错误的图像。下面这些图像,是模型明显错误分类的。深入观察以后,我发现这些图像是被人工错误分类了。

如何优化你的图像分类模型效果?

混淆的图像

有些图像的预测概率在0.5到0.6之间,理论上可能是这个图像表现出不止一个类别,所以模型给他们分配了相同的概率,我也把这些图像剔除了。观察这些图像,这个理论最终被证明是正确的。

方法 2

fast.ai提供了一个方便的插件“图像清理器插件”,它允许你为自己的模型清理和准备数据。图像清理器可以清洗不属于你数据集的图像。它在一行中呈现图像,使你有机会在文件系统中删除文件。

如何优化你的图像分类模型效果?

    测试时间增加

测试时间的增加包括提供原始图像的一系列不同的版本,并把他们传递到模型中。从不同的版本中计算出平均值,并给出图像的最终输出。

如何优化你的图像分类模型效果?

fast.ai中测试时间的增加

之前提出的10-crop技巧跟此技巧类似。我首先在残差网络的论文中读到了10-crop技巧。10-crop技巧包括沿着四角和中心点各裁剪一次,得到五张图像。反向重复以上操作,得到另外五张图像,一共十张。测试时间增加的方法无论如何比10-crop技巧要快。

    集成

机器学习中的集成是一种使用多种学习算法的技术,这种技术可以获得比单一算法更好的预测性能。集成学习最好在下面的条件下工作:

  1. 组成模型具有不同的性质。比如,集成ResNet50和InceptionNet要比组合ResNet50和InceptionNet有用的多,因为它们本质上是不同的。

  2. 组成模型的相关性较低。

  3. 改变模型的训练集,能得到更多的变化。

在本例中,我通过选择最大发生类来集成所有模型的预测。如果有多个类有最大出现的可能,我随机选择其中的一个类。

结果:

公开排行榜——29名(0.962)

私人排行榜——22名(0.9499)

    结论

  1. 渐进的尺寸调整在开始时是一个好主意。

  2. 花时间去理解你的数据并且可视化是必须的。

  3. 像fastai这种具有出色的初始化参数的出色的深度学习库,确实有帮助。

  4. 只要有可能,就要尽量使用迁移学习,因为确实有用。最近,深度学习和迁移学习已经应用到了结构化数据,所以迁移学习绝对应该是首先要尝试的事情。

  5. 最先进的技术例如混合增强,测试时间增加,周期学习率将毫无疑问的帮助你将准确率提高1到2个百分点。

  6. 始终搜索与你的问题相关的数据集,并且把他们尽可能的用在你的训练数据集中。如果可能,深度学习模型在这些模型上训练之后,使用他们的参数作为你模型的初始权重。

想要继续查看该篇文章相关链接和参考文献?

点击底部 【阅读原文】 即可访问:

https://ai.yanxishe.com/page/TextTranslation/1724

如何优化你的图像分类模型效果?

你可能还想看

如何优化你的图像分类模型效果?

如何优化你的图像分类模型效果?

如何优化你的图像分类模型效果?

如何优化你的图像分类模型效果?

如何优化你的图像分类模型效果?

如何优化你的图像分类模型效果?   点击  阅读原文  ,查看更多内容


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Game Engine Architecture, Second Edition

Game Engine Architecture, Second Edition

Jason Gregory / A K Peters/CRC Press / 2014-8-15 / USD 69.95

A 2010 CHOICE outstanding academic title, this updated book covers the theory and practice of game engine software development. It explains practical concepts and techniques used by real game studios,......一起来看看 《Game Engine Architecture, Second Edition》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器

URL 编码/解码
URL 编码/解码

URL 编码/解码