第26章 用预训练模型清除图像中的雾霾

栏目: 数据库 · 发布时间: 6年前

内容简介:文章目录这节我们介绍利用一个预训练模型清除图像中雾霾,使图像更清晰。

文章目录

本章数据集下载地址(提取码是:1nxs)

这节我们介绍利用一个预训练模型清除图像中雾霾,使图像更清晰。

26.1 导入需要的模块

import torch
import torch.nn as nn
import torchvision
import torch.backends.cudnn as cudnn
import torch.optim
import os
import numpy as np
from torchvision import transforms
from PIL import Image
import glob

26.2 查看原来的图像

import matplotlib.pyplot as plt
from matplotlib.image import imread
%matplotlib inline
 
 
img=imread('./clean_photo/test_images/shanghai01.jpg')
plt.imshow(img)
plt.show

第26章 用预训练模型清除图像中的雾霾

26.3 定义一个神经网络

这个神经网络主要由卷积层构成,该网络将构建在预训练模型之上。

#定义一个神经网络
class model(nn.Module):
    def __init__(self):
        super(model, self).__init__()
        self.relu = nn.ReLU(inplace=True)
        
        self.e_conv1 = nn.Conv2d(3,3,1,1,0,bias=True)
        self.e_conv2 = nn.Conv2d(3,3,3,1,1,bias=True) 
        self.e_conv3 = nn.Conv2d(6,3,5,1,2,bias=True) 
        self.e_conv4 = nn.Conv2d(6,3,7,1,3,bias=True) 
        self.e_conv5 = nn.Conv2d(12,3,3,1,1,bias=True) 
        
    def forward(self, x):
        source = []
        source.append(x)
        
        x1 = self.relu(self.e_conv1(x))
        x2 = self.relu(self.e_conv2(x1))
        concat1 = torch.cat((x1,x2), 1)
        x3 = self.relu(self.e_conv3(concat1))
        
        concat2 = torch.cat((x2, x3), 1)
        x4 = self.relu(self.e_conv4(concat2))
        concat3 = torch.cat((x1,x2,x3,x4),1)
        x5 = self.relu(self.e_conv5(concat3))
        clean_image = self.relu((x5 * x) - x5 + 1)
        return clean_image

26.4 训练模型

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
net = model().to(device)
 
 
def cl_image(image_path):
    data = Image.open(image_path)
    data = (np.asarray(data)/255.0)
    data = torch.from_numpy(data).float()
    data = data.permute(2,0,1)
    data = data.to(device).unsqueeze(0)    
    #装载预训练模型
    net.load_state_dict(torch.load('clean_photo/dehazer.pth'))
 
    clean_image = net.forward(data)
    torchvision.utils.save_image(torch.cat((data, clean_image),0), "clean_photo/results/" + image_path.split("/")[-1])
	
 
if __name__ == '__main__':
    test_list = glob.glob("clean_photo/test_images/*")
    
    for image in test_list:
        cl_image(image)
        print(image, "done!")

clean_photo/test_images/shanghai02.jpg done!

26.5 查看处理后的图像

处理后的图像与原图像拼接在一起,保存在clean_photo /results目录下。

import matplotlib.pyplot as plt
from matplotlib.image import imread
%matplotlib inline
 
 
img=imread('clean_photo/results/shanghai01.jpg')
plt.imshow(img)
plt.show

第26章 用预训练模型清除图像中的雾霾

虽非十分理想,但效果还是比较明显的!

更多内容可参考:

https://github.com/TheFairBear/PyTorch-Image-Dehazing


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

程序员的数学

程序员的数学

结城浩 / 管杰 / 人民邮电出版社 / 2012-10 / 49.00元

如果数学不好,是否可以成为一名程序员呢?答案是肯定的。 本书最适合:数学糟糕但又想学习编程的你。 没有晦涩的公式,只有好玩的数学题。 帮你掌握编程所需的“数学思维”。 日文版已重印14次! 编程的基础是计算机科学,而计算机科学的基础是数学。因此,学习数学有助于巩固编程的基础,写出更健壮的程序。 本书面向程序员介绍了编程中常用的数学知识,借以培养初级程序员的数学思维。读......一起来看看 《程序员的数学》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

URL 编码/解码
URL 编码/解码

URL 编码/解码