内容简介:废话滑块验证码破解是一直都想搞的项目,毕竟多数网站都会采用滑块验证码,于是最近在修改论文的闲暇之余把这事儿给解决了。要搞现在的滑块验证码绕不开图像处理,图像处理当然是首推正常的话就会如下显示:
前言
废话
滑块验证码破解是一直都想搞的项目,毕竟多数网站都会采用滑块验证码,于是最近在修改论文的闲暇之余把这事儿给解决了。要搞现在的滑块验证码绕不开图像处理,图像处理当然是首推 OpenCV-Python
啦!当然我的OpenCV非常菜( P.S.两天速成不敢保证代码质量
),发现问题就直接指出嘛,不用走流程啦!
import cv2 as cv import numpy as np if __name__ == '__main__': img = np.ones((200, 200, 3), np.uint8) * 255 cv.rectangle(img, (50, 50), (150, 150), (0, 0, 255), 2) cv.imshow('test', img) cv.waitKey(0) cv.destroyAllWindows()
正常的话就会如下显示:
OpenCV的使用
相关的API我也是边用边查的,用得也是相当生疏!具体的常用方法大家只好自行百度了,我就不献丑了!
实现原理及方法
腾讯滑块验证
这次搞得目标就是腾讯滑块验证码,调用腾讯滑块这个接口的网站还是挺多的,比如非常好用的在线画图网站 ProcessOn
,其中滑块验证部分类似这样子的:
抓个包发现只有滑块图和带缺口的图,如下:
破解滑块验证码最为关键的地方在于 找到滑块缺口的位置
,找到缺口位置后就可以利用 Selenium
模拟拖动滑块到指定位置实现破解,之前的老办法就是 将完整图的像素点和带缺口图的像素点进行比较从而得到缺口位置
,但是现在一般不会将完整图暴露给我们,所以只有在带有缺口的图上进行处理。我这里一共有两种方案进行缺口位置识别,一种是基于 模板匹配
的,另一种是基于 轮廓检测
的,下面会细讲两种方案的实现方法。
模板匹配识别缺口
具体是实现过程如下:
1.处理滑块的图片
- 灰度化滑块图片
- 处理一下滑块图中滑块的外圈
- 使用inRange二值化滑块图
- 使用开运算去除白色噪点
运行结果如下所示(左侧为原始滑块,右侧为处理后的滑块):
2.处理带缺口的图片
- 先来个高斯滤波去噪
- 灰度化带缺口图
- 使用阈值二值化该图
运行结果如下所示(左侧为原始图,右侧为处理后的图):
3.进行模板匹配
调用模板匹配API并圈出匹配上的区域,结果如下所示:
警告警告警告
这种方法的缺口识别率在 50%
左右,很大一部分原因是滑块图的背景为纯白色,这在匹配时会产生很大的干扰, 要是能将滑块图的背景变为透明
,正确的匹配率可以达到90%以上
如果大家有任何将滑块图的背景变为透明的办法,可以留言到评论区,我真的万分感谢!!!
下面是现阶段的实现代码:
# encoding:utf-8 import cv2 as cv import numpy as np # 对滑块进行二值化处理 def handle_img1(image): kernel = np.ones((8, 8), np.uint8) # 去滑块的前景噪声内核 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) width, heigth = gray.shape for h in range(heigth): for w in range(width): if gray[w, h] == 0: gray[w, h] = 96 # cv.imshow('gray', gray) binary = cv.inRange(gray, 96, 96) res = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel) # 开运算去除白色噪点 # cv.imshow('res', res) return res # 模板匹配(用于寻找缺口有点误差) def template_match(img_target, img_template): tpl = handle_img1(img_template) # 误差来源就在于滑块的背景图为白色 blurred = cv.GaussianBlur(img_target, (3, 3), 0) # 目标图高斯滤波 gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY) ret, target = cv.threshold(gray, 127, 255, cv.THRESH_BINARY) # 目标图二值化 # cv.imshow("template", tpl) # cv.imshow("target", target) method = cv.TM_CCOEFF_NORMED width, height = tpl.shape[:2] result = cv.matchTemplate(target, tpl, method) min_val, max_val, min_loc, max_loc = cv.minMaxLoc(result) left_up = max_loc right_down = (left_up[0] + height, left_up[1] + width) cv.rectangle(img_target, left_up, right_down, (0, 0, 255), 2) cv.imshow('res', img_target) if __name__ == '__main__': img0 = cv.imread('./demo/3/hycdn_3.jpg') img1 = cv.imread('./demo/3/hycdn_3_2.png') template_match(img0, img1) cv.waitKey(0) cv.destroyAllWindows()
轮廓检测识别缺口
基于轮廓检测缺口的思路简单很多,加上合理的条件识别率在 95%
以上,实现过程如下:
(200,400)
多个匹配结果如下:
实现代码如下:
# encoding:utf-8 import cv2 as cv def get_pos(image): blurred = cv.GaussianBlur(image, (5, 5), 0) canny = cv.Canny(blurred, 200, 400) contours, hierarchy = cv.findContours(canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) for i, contour in enumerate(contours): M = cv.moments(contour) if M['m00'] == 0: cx = cy = 0 else: cx, cy = M['m10'] / M['m00'], M['m01'] / M['m00'] if 6000 < cv.contourArea(contour) < 8000 and 370 < cv.arcLength(contour, True) < 390: if cx < 400: continue x, y, w, h = cv.boundingRect(contour) # 外接矩形 cv.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2) cv.imshow('image', image) return x return 0 if __name__ == '__main__': img0 = cv.imread('./demo/4/hycdn_4.jpg') get_pos(img0) cv.waitKey(0) cv.destroyAllWindows()
遗留问题
问题1
如何将滑块图的纯白背景变为透明背景?
问题2
使用 Selenium
和轨迹算法拖动滑块时将滑块拖出左侧的范围之外,轨迹算法是先加速后减速整体是向前移动的,按道理来说不可能往回走,但是模拟拖动的时候会出现滑块向后拖动且拖出范围的现象,这问题如何解决?
有知道上述问题如何解决的小伙伴,期待你的留言或评论!!!
END
以上所述就是小编给大家介绍的《OpenCV搞定腾讯滑块验证码》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
奔跑吧 Linux内核
张天飞 / 人民邮电出版社 / 2017-9-1 / CNY 158.00
本书内容基于Linux4.x内核,主要选取了Linux内核中比较基本和常用的内存管理、进程管理、并发与同步,以及中断管理这4个内核模块进行讲述。全书共分为6章,依次介绍了ARM体系结构、Linux内存管理、进程调度管理、并发与同步、中断管理、内核调试技巧等内容。本书的每节内容都是一个Linux内核的话题或者技术点,读者可以根据每小节前的问题进行思考,进而围绕问题进行内核源代码的分析。 本书内......一起来看看 《奔跑吧 Linux内核》 这本书的介绍吧!
HTML 编码/解码
HTML 编码/解码
HEX HSV 转换工具
HEX HSV 互换工具