内容简介:废话滑块验证码破解是一直都想搞的项目,毕竟多数网站都会采用滑块验证码,于是最近在修改论文的闲暇之余把这事儿给解决了。要搞现在的滑块验证码绕不开图像处理,图像处理当然是首推正常的话就会如下显示:
前言
废话
滑块验证码破解是一直都想搞的项目,毕竟多数网站都会采用滑块验证码,于是最近在修改论文的闲暇之余把这事儿给解决了。要搞现在的滑块验证码绕不开图像处理,图像处理当然是首推 OpenCV-Python 啦!当然我的OpenCV非常菜( P.S.两天速成不敢保证代码质量 ),发现问题就直接指出嘛,不用走流程啦!
import cv2 as cv
import numpy as np
if __name__ == '__main__':
img = np.ones((200, 200, 3), np.uint8) * 255
cv.rectangle(img, (50, 50), (150, 150), (0, 0, 255), 2)
cv.imshow('test', img)
cv.waitKey(0)
cv.destroyAllWindows()
正常的话就会如下显示:
OpenCV的使用
相关的API我也是边用边查的,用得也是相当生疏!具体的常用方法大家只好自行百度了,我就不献丑了!
实现原理及方法
腾讯滑块验证
这次搞得目标就是腾讯滑块验证码,调用腾讯滑块这个接口的网站还是挺多的,比如非常好用的在线画图网站 ProcessOn ,其中滑块验证部分类似这样子的:
抓个包发现只有滑块图和带缺口的图,如下:
破解滑块验证码最为关键的地方在于 找到滑块缺口的位置 ,找到缺口位置后就可以利用 Selenium 模拟拖动滑块到指定位置实现破解,之前的老办法就是 将完整图的像素点和带缺口图的像素点进行比较从而得到缺口位置 ,但是现在一般不会将完整图暴露给我们,所以只有在带有缺口的图上进行处理。我这里一共有两种方案进行缺口位置识别,一种是基于 模板匹配 的,另一种是基于 轮廓检测 的,下面会细讲两种方案的实现方法。
模板匹配识别缺口
具体是实现过程如下:
1.处理滑块的图片
- 灰度化滑块图片
- 处理一下滑块图中滑块的外圈
- 使用inRange二值化滑块图
- 使用开运算去除白色噪点
运行结果如下所示(左侧为原始滑块,右侧为处理后的滑块):
2.处理带缺口的图片
- 先来个高斯滤波去噪
- 灰度化带缺口图
- 使用阈值二值化该图
运行结果如下所示(左侧为原始图,右侧为处理后的图):
3.进行模板匹配
调用模板匹配API并圈出匹配上的区域,结果如下所示:
警告警告警告
这种方法的缺口识别率在 50% 左右,很大一部分原因是滑块图的背景为纯白色,这在匹配时会产生很大的干扰, 要是能将滑块图的背景变为透明 ,正确的匹配率可以达到90%以上
如果大家有任何将滑块图的背景变为透明的办法,可以留言到评论区,我真的万分感谢!!! 下面是现阶段的实现代码:
# encoding:utf-8
import cv2 as cv
import numpy as np
# 对滑块进行二值化处理
def handle_img1(image):
kernel = np.ones((8, 8), np.uint8) # 去滑块的前景噪声内核
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
width, heigth = gray.shape
for h in range(heigth):
for w in range(width):
if gray[w, h] == 0:
gray[w, h] = 96
# cv.imshow('gray', gray)
binary = cv.inRange(gray, 96, 96)
res = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel) # 开运算去除白色噪点
# cv.imshow('res', res)
return res
# 模板匹配(用于寻找缺口有点误差)
def template_match(img_target, img_template):
tpl = handle_img1(img_template) # 误差来源就在于滑块的背景图为白色
blurred = cv.GaussianBlur(img_target, (3, 3), 0) # 目标图高斯滤波
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
ret, target = cv.threshold(gray, 127, 255, cv.THRESH_BINARY) # 目标图二值化
# cv.imshow("template", tpl)
# cv.imshow("target", target)
method = cv.TM_CCOEFF_NORMED
width, height = tpl.shape[:2]
result = cv.matchTemplate(target, tpl, method)
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(result)
left_up = max_loc
right_down = (left_up[0] + height, left_up[1] + width)
cv.rectangle(img_target, left_up, right_down, (0, 0, 255), 2)
cv.imshow('res', img_target)
if __name__ == '__main__':
img0 = cv.imread('./demo/3/hycdn_3.jpg')
img1 = cv.imread('./demo/3/hycdn_3_2.png')
template_match(img0, img1)
cv.waitKey(0)
cv.destroyAllWindows()
轮廓检测识别缺口
基于轮廓检测缺口的思路简单很多,加上合理的条件识别率在 95% 以上,实现过程如下:
(200,400)
多个匹配结果如下:
实现代码如下:
# encoding:utf-8
import cv2 as cv
def get_pos(image):
blurred = cv.GaussianBlur(image, (5, 5), 0)
canny = cv.Canny(blurred, 200, 400)
contours, hierarchy = cv.findContours(canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for i, contour in enumerate(contours):
M = cv.moments(contour)
if M['m00'] == 0:
cx = cy = 0
else:
cx, cy = M['m10'] / M['m00'], M['m01'] / M['m00']
if 6000 < cv.contourArea(contour) < 8000 and 370 < cv.arcLength(contour, True) < 390:
if cx < 400:
continue
x, y, w, h = cv.boundingRect(contour) # 外接矩形
cv.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv.imshow('image', image)
return x
return 0
if __name__ == '__main__':
img0 = cv.imread('./demo/4/hycdn_4.jpg')
get_pos(img0)
cv.waitKey(0)
cv.destroyAllWindows()
遗留问题
问题1
如何将滑块图的纯白背景变为透明背景?
问题2
使用 Selenium 和轨迹算法拖动滑块时将滑块拖出左侧的范围之外,轨迹算法是先加速后减速整体是向前移动的,按道理来说不可能往回走,但是模拟拖动的时候会出现滑块向后拖动且拖出范围的现象,这问题如何解决?
有知道上述问题如何解决的小伙伴,期待你的留言或评论!!!
END
以上所述就是小编给大家介绍的《OpenCV搞定腾讯滑块验证码》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
深入浅出Web设计(中文版)
(美)瓦特罗尔、(美)西罗托 / O'Reilly Taiwan公司 / 东南大学出版社 / 2010-11 / 99.00元
你将从《深入浅出Web设计(中文版)》学到什么?你曾经希望看看书就能学到真正的网站设计吗?曾经想过该如何同时达成让网站看起来美观,又能有效率地沟通信息,还要通过可访问性与可用性的策略吗?《深入浅出Web设计》正是精通上述主题的秘笈。我们将学到如何设计一个绝佳、用户友好的网站,上谈客户需求,下说手绘分镜表,乃至完成在线所需的HTML与css主文件……而且会有一个真正可以运作的网站!一起来看看 《深入浅出Web设计(中文版)》 这本书的介绍吧!