内容简介:十分钟搞定pandas
这是关于pandas的简短介绍,主要面向新用户。可以参阅 Cookbook 了解更复杂的使用方法。
习惯上,我们做以下导入
In [1]: import pandas as pd In [2]: import numpy as np In [3]: import matplotlib.pyplot as plt
创建对象
使用传递的值列表序列创建 序列 , 让pandas创建默认整数索引
In [4]: s = pd.Series([1,3,5,np.nan,6,8]) In [5]: s Out[5]: 0 1 1 3 2 5 3 NaN 4 6 5 8 dtype: float64
使用传递的numpy数组创建 数据帧 ,并使用日期索引和标记列.
In [6]: dates = pd.date_range('20130101',periods=6) In [7]: dates Out[7]: <class 'pandas.tseries.index.DatetimeIndex'> [2013-01-01, ..., 2013-01-06] Length: 6, Freq: D, Timezone: None In [8]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD')) In [9]: df Out[9]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
使用传递的可转换序列的字典对象创建 数据帧 .
In [10]: df2 = pd.DataFrame({ 'A' : 1., ....: 'B' : pd.Timestamp('20130102'), ....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'), ....: 'D' : np.array([3] * 4,dtype='int32'), ....: 'E' : pd.Categorical(["test","train","test","train"]), ....: 'F' : 'foo' }) ....: In [11]: df2 Out[11]: A B C D E F 0 1 2013-01-02 1 3 test foo 1 1 2013-01-02 1 3 train foo 2 1 2013-01-02 1 3 test foo 3 1 2013-01-02 1 3 train foo
所有明确 类型
In [12]: df2.dtypes Out[12]: A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object
如果你这个正在使用IPython,标签补全列名(以及公共属性)将自动启用。这里是将要完成的属性的子集:
In [13]: df2.<TAB> df2.A df2.boxplot df2.abs df2.C df2.add df2.clip df2.add_prefix df2.clip_lower df2.add_suffix df2.clip_upper df2.align df2.columns df2.all df2.combine df2.any df2.combineAdd df2.append df2.combine_first df2.apply df2.combineMult df2.applymap df2.compound df2.as_blocks df2.consolidate df2.asfreq df2.convert_objects df2.as_matrix df2.copy df2.astype df2.corr df2.at df2.corrwith df2.at_time df2.count df2.axes df2.cov df2.B df2.cummax df2.between_time df2.cummin df2.bfill df2.cumprod df2.blocks df2.cumsum df2.bool df2.D
如你所见, 列 A , B , C , 和 D 也是自动完成标签. E 也是可用的; 为了简便起见,后面的属性显示被截断.
查看数据
参阅 基础部分
查看帧顶部和底部行
In [14]: df.head() Out[14]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [15]: df.tail(3) Out[15]: A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
显示索引,列,和底层numpy数据
In [16]: df.index Out[16]: <class 'pandas.tseries.index.DatetimeIndex'> [2013-01-01, ..., 2013-01-06] Length: 6, Freq: D, Timezone: None In [17]: df.columns Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object') In [18]: df.values Out[18]: array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]])
描述显示数据快速统计摘要
In [19]: df.describe() Out[19]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804
转置数据
In [20]: df.T Out[20]: 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690 B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648 C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427 D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
按轴排序
In [21]: df.sort_index(axis=1, ascending=False) Out[21]: D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690
按值排序
In [22]: df.sort(columns='B') Out[22]: A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
选择器
注释:标准Python / Numpy表达式可以完成这些互动工作, 但在生产代码中, 我们推荐使用优化的pandas数据访问方法, .at, .iat, .loc, .iloc 和 .ix.
读取
选择单列, 这会产生一个 序列 , 等价df. A
In [23]: df['A'] Out[23]: 2013-01-01 0.469112 2013-01-02 1.212112 2013-01-03 -0.861849 2013-01-04 0.721555 2013-01-05 -0.424972 2013-01-06 -0.673690 Freq: D, Name: A, dtype: float64
使用 [] 选择行片断
In [24]: df[0:3] Out[24]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['20130102':'20130104'] Out[25]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
使用标签选择
更多信息请参阅 按标签选择
使用标签获取横截面
In [26]: df.loc[dates[0]] Out[26]: A 0.469112 B -0.282863 C -1.509059 D -1.135632 Name: 2013-01-01 00:00:00, dtype: float64
使用标签选择多轴
In [27]: df.loc[:,['A','B']] Out[27]: A B 2013-01-01 0.469112 -0.282863 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 2013-01-06 -0.673690 0.113648
显示标签切片, 包含 两个端点
In [28]: df.loc['20130102':'20130104',['A','B']] Out[28]: A B 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771
降低返回对象维度
In [29]: df.loc['20130102',['A','B']] Out[29]: A 1.212112 B -0.173215 Name: 2013-01-02 00:00:00, dtype: float64
获取标量值
In [30]: df.loc[dates[0],'A'] Out[30]: 0.46911229990718628
快速访问并获取标量数据 (等价上面的方法)
In [31]: df.at[dates[0],'A'] Out[31]: 0.46911229990718628
按位置选择
更多信息请参阅 按位置参阅
传递整数选择位置
In [32]: df.iloc[3] Out[32]: A 0.721555 B -0.706771 C -1.039575 D 0.271860 Name: 2013-01-04 00:00:00, dtype: float64
使用整数片断,效果类似numpy/python
In [33]: df.iloc[3:5,0:2] Out[33]: A B 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020
使用整数偏移定位列表,效果类似 numpy/python 样式
In [34]: df.iloc[[1,2,4],[0,2]] Out[34]: A C 2013-01-02 1.212112 0.119209 2013-01-03 -0.861849 -0.494929 2013-01-05 -0.424972 0.276232
显式行切片
In [35]: df.iloc[1:3,:] Out[35]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
显式列切片
In [36]: df.iloc[:,1:3] Out[36]: B C 2013-01-01 -0.282863 -1.509059 2013-01-02 -0.173215 0.119209 2013-01-03 -2.104569 -0.494929 2013-01-04 -0.706771 -1.039575 2013-01-05 0.567020 0.276232 2013-01-06 0.113648 -1.478427
显式获取一个值
In [37]: df.iloc[1,1] Out[37]: -0.17321464905330861
快速访问一个标量(等同上个方法)
In [38]: df.iat[1,1] Out[38]: -0.17321464905330861
布尔索引
使用单个列的值选择数据.
In [39]: df[df.A > 0] Out[39]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
where 操作.
In [40]: df[df > 0] Out[40]: A B C D 2013-01-01 0.469112 NaN NaN NaN 2013-01-02 1.212112 NaN 0.119209 NaN 2013-01-03 NaN NaN NaN 1.071804 2013-01-04 0.721555 NaN NaN 0.271860 2013-01-05 NaN 0.567020 0.276232 NaN 2013-01-06 NaN 0.113648 NaN 0.524988
使用 isin() 筛选:
In [41]: df2 = df.copy() In [42]: df2['E']=['one', 'one','two','three','four','three'] In [43]: df2 Out[43]: A B C D E 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2['E'].isin(['two','four'])] Out[44]: A B C D E 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
赋值
赋值一个新列,通过索引自动对齐数据
In [45]: s1 = pd.Series([1,2,3,4,5,6],index=pd.date_range('20130102',periods=6)) In [46]: s1 Out[46]: 2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64 In [47]: df['F'] = s1
按标签赋值
In [48]: df.at[dates[0],'A'] = 0
按位置赋值
In [49]: df.iat[0,1] = 0
通过numpy数组分配赋值
In [50]: df.loc[:,'D'] = np.array([5] * len(df))
之前的操作结果
In [51]: df Out[51]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 0.119209 5 1 2013-01-03 -0.861849 -2.104569 -0.494929 5 2 2013-01-04 0.721555 -0.706771 -1.039575 5 3 2013-01-05 -0.424972 0.567020 0.276232 5 4 2013-01-06 -0.673690 0.113648 -1.478427 5 5
where操作赋值.
In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5
丢失的数据
pandas主要使用 np.nan 替换丢失的数据. 默认情况下它并不包含在计算中. 请参阅 Missing Data section
重建索引允许更改/添加/删除指定轴索引,并返回数据副本.
In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + ['E']) In [56]: df1.loc[dates[0]:dates[1],'E'] = 1 In [57]: df1 Out[57]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1 2013-01-02 1.212112 -0.173215 0.119209 5 1 1 2013-01-03 -0.861849 -2.104569 -0.494929 5 2 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5 3 NaN
删除任何有丢失数据的行.
In [58]: df1.dropna(how='any') Out[58]: A B C D F E 2013-01-02 1.212112 -0.173215 0.119209 5 1 1
填充丢失数据
In [59]: df1.fillna(value=5) Out[59]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 5 1 2013-01-02 1.212112 -0.173215 0.119209 5 1 1 2013-01-03 -0.861849 -2.104569 -0.494929 5 2 5 2013-01-04 0.721555 -0.706771 -1.039575 5 3 5
获取值是否 nan 的布尔标记
In [60]: pd.isnull(df1) Out[60]: A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True
运算
参阅 二元运算基础
统计
计算时一般不包括丢失的数据
执行描述性统计
In [61]: df.mean() Out[61]: A -0.004474 B -0.383981 C -0.687758 D 5.000000 F 3.000000 dtype: float64
在其他轴做相同的运算
In [62]: df.mean(1) Out[62]: 2013-01-01 0.872735 2013-01-02 1.431621 2013-01-03 0.707731 2013-01-04 1.395042 2013-01-05 1.883656 2013-01-06 1.592306 Freq: D, dtype: float64
用于运算的对象有不同的维度并需要对齐.除此之外,pandas会自动沿着指定维度计算.
In [63]: s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2) In [64]: s Out[64]: 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1 2013-01-04 3 2013-01-05 5 2013-01-06 NaN Freq: D, dtype: float64 In [65]: df.sub(s,axis='index') Out[65]: A B C D F 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4 1 2013-01-04 -2.278445 -3.706771 -4.039575 2 0 2013-01-05 -5.424972 -4.432980 -4.723768 0 -1 2013-01-06 NaN NaN NaN NaN NaN
Apply
在数据上使用函数
In [66]: df.apply(np.cumsum) Out[66]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 -1.389850 10 1 2013-01-03 0.350263 -2.277784 -1.884779 15 3 2013-01-04 1.071818 -2.984555 -2.924354 20 6 2013-01-05 0.646846 -2.417535 -2.648122 25 10 2013-01-06 -0.026844 -2.303886 -4.126549 30 15 In [67]: df.apply(lambda x: x.max() - x.min()) Out[67]: A 2.073961 B 2.671590 C 1.785291 D 0.000000 F 4.000000 dtype: float64
直方图
请参阅 直方图和离散化
In [68]: s = pd.Series(np.random.randint(0,7,size=10)) In [69]: s Out[69]: 0 4 1 2 2 1 3 2 4 6 5 4 6 4 7 6 8 4 9 4 dtype: int32 In [70]: s.value_counts() Out[70]: 4 5 6 2 2 2 1 1 dtype: int64
字符串方法
序列可以使用一些字符串处理方法很轻易操作数据组中的每个元素,比如以下代码片断。 注意字符匹配方法默认情况下通常使用 正则表达式 (并且大多数时候都如此). 更多信息请参阅 字符串向量方法 .
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [72]: s.str.lower() Out[72]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object
合并
连接
pandas提供各种 工具 以简便合并序列,数据桢,和组合对象, 在连接/合并类型操作中使用多种类型索引和相关数学函数.
请参阅 合并部分
把pandas对象连接到一起
In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df Out[74]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces) Out[76]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495
连接
SQL样式合并. 请参阅 数据库style联接
In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) In [79]: left Out[79]: key lval 0 foo 1 1 foo 2 In [80]: right Out[80]: key rval 0 foo 4 1 foo 5 In [81]: pd.merge(left, right, on='key') Out[81]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5
添加
添加行到数据增. 参阅 添加
In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D']) In [83]: df Out[83]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 In [84]: s = df.iloc[3] In [85]: df.append(s, ignore_index=True) Out[85]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 8 1.453749 1.208843 -0.080952 -0.264610
分组
对于“group by”指的是以下一个或多个处理
- 将数据按某些标准分割为不同的组
- 在每个独立组上应用函数
- 组合结果为一个数据结构
请参阅 分组部分
In [86]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ....: 'foo', 'bar', 'foo', 'foo'], ....: 'B' : ['one', 'one', 'two', 'three', ....: 'two', 'two', 'one', 'three'], ....: 'C' : np.random.randn(8), ....: 'D' : np.random.randn(8)}) ....: In [87]: df Out[87]: A B C D 0 foo one -1.202872 -0.055224 1 bar one -1.814470 2.395985 2 foo two 1.018601 1.552825 3 bar three -0.595447 0.166599 4 foo two 1.395433 0.047609 5 bar two -0.392670 -0.136473 6 foo one 0.007207 -0.561757 7 foo three 1.928123 -1.623033
分组然后应用函数统计总和存放到结果组
In [88]: df.groupby('A').sum() Out[88]: C D A bar -2.802588 2.42611 foo 3.146492 -0.63958
按多列分组为层次索引,然后应用函数
In [89]: df.groupby(['A','B']).sum() Out[89]: C D A B bar one -1.814470 2.395985 three -0.595447 0.166599 two -0.392670 -0.136473 foo one -1.195665 -0.616981 three 1.928123 -1.623033 two 2.414034 1.600434
重塑
堆叠
In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', ....: 'foo', 'foo', 'qux', 'qux'], ....: ['one', 'two', 'one', 'two', ....: 'one', 'two', 'one', 'two']])) ....: In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [93]: df2 = df[:4] In [94]: df2 Out[94]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230
堆叠函数 “压缩” 数据桢的列一个级别.
In [95]: stacked = df2.stack() In [96]: stacked Out[96]: first second bar one A 0.029399 B -0.542108 two A 0.282696 B -0.087302 baz one A -1.575170 B 1.771208 two A 0.816482 B 1.100230 dtype: float64
被“堆叠”数据桢或序列(有 多个索引 作为 索引 ), 其 堆叠 的反向操作是 未堆栈 , 上面的数据默认反堆叠到 上一级别 :
In [97]: stacked.unstack() Out[97]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230 In [98]: stacked.unstack(1) Out[98]: second one two first bar A 0.029399 0.282696 B -0.542108 -0.087302 baz A -1.575170 0.816482 B 1.771208 1.100230 In [99]: stacked.unstack(0) Out[99]: first bar baz second one A 0.029399 -1.575170 B -0.542108 1.771208 two A 0.282696 0.816482 B -0.087302 1.100230
数据透视表
查看 数据透视表 .
In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, .....: 'B' : ['A', 'B', 'C'] * 4, .....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, .....: 'D' : np.random.randn(12), .....: 'E' : np.random.randn(12)}) .....: In [101]: df Out[101]: A B C D E 0 one A foo 1.418757 -0.179666 1 one B foo -1.879024 1.291836 2 two C foo 0.536826 -0.009614 3 three A bar 1.006160 0.392149 4 one B bar -0.029716 0.264599 5 one C bar -1.146178 -0.057409 6 two A foo 0.100900 -1.425638 7 three B foo -1.035018 1.024098 8 one C foo 0.314665 -0.106062 9 one A bar -0.773723 1.824375 10 two B bar -1.170653 0.595974 11 three C bar 0.648740 1.167115
我们可以从此数据非常容易的产生数据透视表:
In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C']) Out[102]: C bar foo A B one A -0.773723 1.418757 B -0.029716 -1.879024 C -1.146178 0.314665 three A 1.006160 NaN B NaN -1.035018 C 0.648740 NaN two A NaN 0.100900 B -1.170653 NaN C NaN 0.536826
时间序列
pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据), 这是很普遍的情况,但并不局限于金融应用, 请参阅 时间序列章节
In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S') In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [105]: ts.resample('5Min', how='sum') Out[105]: 2012-01-01 25083 Freq: 5T, dtype: int32
时区表示
In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') In [107]: ts = pd.Series(np.random.randn(len(rng)), rng) In [108]: ts Out[108]: 2012-03-06 0.464000 2012-03-07 0.227371 2012-03-08 -0.496922 2012-03-09 0.306389 2012-03-10 -2.290613 Freq: D, dtype: float64 In [109]: ts_utc = ts.tz_localize('UTC') In [110]: ts_utc Out[110]: 2012-03-06 00:00:00+00:00 0.464000 2012-03-07 00:00:00+00:00 0.227371 2012-03-08 00:00:00+00:00 -0.496922 2012-03-09 00:00:00+00:00 0.306389 2012-03-10 00:00:00+00:00 -2.290613 Freq: D, dtype: float64
转换到其它时区
In [111]: ts_utc.tz_convert('US/Eastern') Out[111]: 2012-03-05 19:00:00-05:00 0.464000 2012-03-06 19:00:00-05:00 0.227371 2012-03-07 19:00:00-05:00 -0.496922 2012-03-08 19:00:00-05:00 0.306389 2012-03-09 19:00:00-05:00 -2.290613 Freq: D, dtype: float64
转换不同的时间跨度
In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M') In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng) In [114]: ts Out[114]: 2012-01-31 -1.134623 2012-02-29 -1.561819 2012-03-31 -0.260838 2012-04-30 0.281957 2012-05-31 1.523962 Freq: M, dtype: float64 In [115]: ps = ts.to_period() In [116]: ps Out[116]: 2012-01 -1.134623 2012-02 -1.561819 2012-03 -0.260838 2012-04 0.281957 2012-05 1.523962 Freq: M, dtype: float64 In [117]: ps.to_timestamp() Out[117]: 2012-01-01 -1.134623 2012-02-01 -1.561819 2012-03-01 -0.260838 2012-04-01 0.281957 2012-05-01 1.523962 Freq: MS, dtype: float64
转换时段并且使用一些运算函数, 下例中, 我们转换年报11月到季度结束每日上午9点数据
In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') In [119]: ts = pd.Series(np.random.randn(len(prng)), prng) In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9 In [121]: ts.head() Out[121]: 1990-03-01 09:00 -0.902937 1990-06-01 09:00 0.068159 1990-09-01 09:00 -0.057873 1990-12-01 09:00 -0.368204 1991-03-01 09:00 -1.144073 Freq: H, dtype: float64
分类
自版本0.15起, pandas可以在 数据桢 中包含分类. 完整的文档, 请查看 分类介绍 and the API文档 .
In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
转换原始类别为分类数据类型.
In [123]: df["grade"] = df["raw_grade"].astype("category") In [124]: df["grade"] Out[124]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e]
重命令分类为更有意义的名称 (分配到 Series.cat.categories 对应位置!)
In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"]
重排顺分类,同时添加缺少的分类( 序列 .cat 方法下返回新默认 序列 )
In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) In [127]: df["grade"] Out[127]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad, bad, medium, good, very good]
排列分类中的顺序,不是按词汇排列.
In [128]: df.sort("grade") Out[128]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good
类别列分组,并且也显示空类别.
In [129]: df.groupby("grade").size() Out[129]: grade very bad 1 bad NaN medium NaN good 2 very good 3 dtype: float64
绘图
绘图 文档.
In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) In [131]: ts = ts.cumsum() In [132]: ts.plot() Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0xb02091ac>
在数据桢中,可以很方便的绘制带标签列:
In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, .....: columns=['A', 'B', 'C', 'D']) .....: In [134]: df = df.cumsum() In [135]: plt.figure(); df.plot(); plt.legend(loc='best') Out[135]: <matplotlib.legend.Legend at 0xb01c9cac>
获取数据输入/输出
CSV
In [136]: df.to_csv('foo.csv')
In [137]: pd.read_csv('foo.csv') Out[137]: Unnamed: 0 A B C D 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 .. ... ... ... ... ... 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]
HDF5
读写 HDF存储
写入HDF5存储
In [138]: df.to_hdf('foo.h5','df')
读取HDF5存储
In [139]: pd.read_hdf('foo.h5','df') Out[139]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
Excel
读写 MS Excel
写入excel文件
In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
读取excel文件
In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']) Out[141]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
陷阱
如果尝试这样操作可能会看到像这样的异常:
>>> if pd.Series([False, True, False]): print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
查看 对照 获取解释和怎么做的帮助
也可以查看 陷阱 .
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
离散数学及其应用(原书第6版·本科教学版)
[美] Kenneth H. Rosen / 袁崇义、屈婉玲、张桂芸 / 机械工业出版社 / 2011-11 / 49.00元
《离散数学及其应用》一书是介绍离散数学理论和方法的经典教材,已经成为采用率最高的离散数学教材,仅在美国就被600多所高校用作教材,并获得了极大的成功。第6版在前5版的基础上做了大量的改进,使其成为更有效的教学工具。 本书基于该书第6版进行改编,保留了国内离散数学课程涉及的基本内容,更加适合作为国内高校计算机及相关专业本科生的离散数学课程教材。本书的具体改编情况如下: · 补充了关于范式......一起来看看 《离散数学及其应用(原书第6版·本科教学版)》 这本书的介绍吧!