《经济学人》数据可视化编辑:错误的图表,我们也画了很多

栏目: 数据库 · 发布时间: 6年前

内容简介:经济学人杂志除了色彩鲜明的文章之外,其在数据可视化方面也自成一派。据图表编辑编辑Sarah Leo在一篇博客中介绍到:虽然对于每一张图表,他们都尽量准确地以最能支持故事表达的方式来可视化数字,但有时候也会犯错。

《经济学人》数据可视化编辑:错误的图表,我们也画了很多

大数据文摘出品

来源:Medium

编译:张秋玥、夏雅薇

经济学人杂志除了色彩鲜明的文章之外,其在数据可视化方面也自成一派。 绝妙的颜色搭配,风格鲜明的图表总能让读者过目不忘。

据图表编辑编辑Sarah Leo在一篇博客中介绍到:虽然对于每一张图表,他们都尽量准确地以最能支持故事表达的方式来可视化数字,但有时候也会犯错。

为了能够做的更好,他们在从错误中不断总结教训,不断的自我改进。为此Sarah Leo还把经济学人的错误总结为3点,并写成一篇博客,供大家参考,大数据文摘对文章编译如下☟

深入了解我们的记录后,我找到了几个有用的例子。我将针对数据可视化的问题分为三类:

  • 误导性图表

  • 模糊的图表

  • 未能说明问题的图表

免责声明:大多数“原始”图表是在我们的图表重新设计之前发布的。改进的图表是为了符合我们的新规格而绘制的。它们的数据完全一致。

误导性的图表

以误导的方式呈现数据是数据可视化中最严重的问题,虽然我们从不故意这样做,但它确实时不时发生。我们来看看三个例子。

错误:截断标尺

《经济学人》数据可视化编辑:错误的图表,我们也画了很多

这图就很左翼分子对不对

此图表显示了政治左翼Facebook页面上帖子的点赞平均数量。这张图表的重点是显示Corbyn先生与其他帖子之间的差异。

原始图表不仅低估了Corbyn先生的数量,还夸大了其他帖子的数量。在重新设计的版本中,我们完整地展示了Corbyn先生的数据并保证所有其他数据长条仍然可见。

另一个奇怪的是颜色的选择。为了模仿工党的配色方案,原图使用了三种橙色/红色色调来区分Jeremy Corbyn与其他国会议员和政党。虽然颜色背后的逻辑对许多读者来说可能是显而易见的,但对于那些不太熟悉英国政治的人来说,这可能没什么意义。

错误:通过故意操纵坐标轴来假装存在相关关系

《经济学人》数据可视化编辑:错误的图表,我们也画了很多

难得的完美关联?并不是的。

上面的图表附有一个关于狗重量下降的故事。乍一看,似乎狗的体重和颈部大小完全相关。但这是真的吗?其实并不是很相关哦。

在原始图表中,两个坐标轴的跨度均为三个单位(左边是21到18;右边是45到42)。按百分比计算,左边的比例下降了14%而右边则下降了7%。在重新设计的图表中,我保留了双坐标轴的设计,但调整了它们的范围以反映可比较的比例变化。

考虑到这个图表的休闲主题,这个错误可能看起来并没有那么重要。毕竟,图表的信息在两个版本中都是相同的。但我们从中学到的事情很重要:如果两个变量过于紧密相关,那么再仔细观察一下坐标轴尺度可能是一个好主意。

错误:选择错误的可视化方法

《经济学人》数据可视化编辑:错误的图表,我们也画了很多

对脱欧的看法几乎和谈判结果一样不稳定

我们在每日新闻应用Espresso中发布了此投票图表。它显示了民众对欧盟公投结果的态度,并以折线图绘制。从数据来看,似乎受访者对公投结果的看法相当不稳定——每周都会增加或减少几个百分点。

我们并未使用平滑曲线绘制单个民意调查来显示趋势,而是连接每个民意调查的实际值。这主要是因为我们的内部图表 工具 没有绘制平滑线条的功能。我们直到最近才逐渐开始熟悉更复杂的可视化统计软件(如R)。今天,我们团队所有人都能够绘制一个类似上面重新设计的投票图表了。

此图表中需要注意的另一件事是坐标轴如何起点的方式。原始图表将数据扩展到全部空间。而在重新设计的版本中,我在坐标轴开始的部位和最小数据点之间留下了更多空间。弗朗西斯·加农(Francis Gagnon)为此制定了一个很好的规则:我们应当试着在一个不从零开始的折线图下留出至少33%的空白区域。

模糊的图表

这没有误导性图表那么过分,但是一份难以阅读的图表还是表明可视化工作做得很糟糕。

错误:“发散性思维”过于发散了

《经济学人》数据可视化编辑:错误的图表,我们也画了很多

…这啥玩意?

在“经济学人”杂志上,我们被鼓励创造“发散性思维”的新闻报道。但是有时候,我们会认为这有点太过分了。上图显示了美国的商品贸易逆差和制造业就业人数。

该图表非常难以阅读。它有两个主要问题。首先,一个变量(贸易逆差)的值完全是负数,而另一变量(制造业就业)都是正数。将这些差异结合在一个图表中而不平坦化任一变量非常不合理。有一个显而易见的解决方案,但这却会导致第二个问题:两个变量不共享共同基线。贸易赤字的基线位于图表的顶部(通过图表左半边那截红线突出显示),而右半部分的基线则位于底部。

重新设计的图表显示其实并没有必要组合这两个数据系列。贸易逆差与制造业就业之间的关系仍然很明显,而这一图表并没有额外占据多少空间。

错误:莫名其妙的颜色使用

《经济学人》数据可视化编辑:错误的图表,我们也画了很多

该图表将政府在养老金福利方面的支出与国家65岁以上人口比例进行了比较,并特别关注了巴西的情况。为了使图表占据较小版面,可视化工具仅标记了部分国家/地区,并以电蓝色突出显示。经合组织的平均值则以淡蓝色突出显示。

可视化者忽略了这样一个事实,即不同颜色通常意味着不同分类。乍一看,这个图表似乎也是如此——所有电蓝色似乎属于与深蓝色不同的组合。但其实压根不是这样的,区别只是一个有打上国家标签,一个没有而已。

在重新设计的版本中,所有国家/地区的圆圈颜色保持不变。我将没有标签的数据点的透明度调高了。剩下的就靠排版了:巴西是重点国家所以用字体加粗;而经合组织则用斜体字表示。

未能说明问题的图表

最后一类的错误不太明显。像这样的图表不会误导读者,也不会让人感到困惑。他们只是没有证明他们存在的合理性 - 通常是因为可视化 不合理,或者因为我们非要在小版面内塞进过多信息。

错误:包含太多细节

《经济学人》数据可视化编辑:错误的图表,我们也画了很多

“颜色越多越好!”——好的可视化才不会这样

这彩虹真好看!我们在德国预算盈余的专栏中公布了这张图表。它显示了10个欧元区国家的预算余额和活期账户余额。

有这么多颜色,而且其中一些很难被区分。另外,因为对应的值太小了,压根没有办法得到任何图表信息。它只会让你眼前一愣然后赶紧转移视线。而且更重要的是,由于我们没有绘制所有欧元区国家,因此堆叠数据没有任何意义。

我回过头看看有没有办法简化这个图表。该专栏提到德国、希腊、荷兰、西班牙以及欧元区总数。在重新设计的图表版本中,我决定只强调这些。为了解决仅堆叠部分国家的问题,我添加了另一个类别(“其他”),其中包括所有其他欧元区国家。(由于欧盟统计局进行了数据修订,重新设计的图表中的流动账户余额总额低于原始图表。)

错误:大量数据,空间不足

《经济学人》数据可视化编辑:错误的图表,我们也画了很多

我放弃。

受到有限版面空间的限制,我们经常试图将所有数据一股脑儿塞进图表中。虽然这可以节省页面上的宝贵空间,但它还是会有负面影响。比如这张2017年三月的图表,它是关于科学界的论文发表是如何由男性主导的。所有数据点都同样有趣且与主旨紧密相关。但是,一下子提供如此多的数据(四个研究领域类别以及发表人的比例)这些信息很难一起被接受。

经过深思熟虑之后,我决定不重新设计这个图表。如果我要保留所有数据,那么图表就会变得过于复杂而不简洁。在这种情况下,削减一些内容会更好。或者,我们可以展示某种平均化的衡量标准,例如所有领域的女性发表作品的平均比例。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Learning Python, 5th Edition

Learning Python, 5th Edition

Mark Lutz / O'Reilly Media / 2013-7-6 / USD 64.99

If you want to write efficient, high-quality code that's easily integrated with other languages and tools, this hands-on book will help you be productive with Python quickly. Learning Python, Fifth Ed......一起来看看 《Learning Python, 5th Edition》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具