医美AI的商业逻辑

栏目: 编程工具 · 发布时间: 5年前

内容简介:计算机视觉、人工智能、大数据......吴博身上的标签,似乎通通与美业无关。而如今,仅用了一年时间,他已和将近400家美业机构建立了合作关系。2017年,这位理工男经过对行业需求分析后,集结了人工智能领域20多位博士和医学领域专家,创立了主要服务医疗健康及美业机构的医疗科技公司宜远智能。

医美AI的商业逻辑

计算机视觉、人工智能、大数据......吴博身上的标签,似乎通通与美业无关。而如今,仅用了一年时间,他已和将近400家美业机构建立了合作关系。

2017年,这位理工男经过对行业需求分析后,集结了人工智能领域20多位博士和医学领域专家,创立了主要服务医疗健康及美业机构的医疗科技公司宜远智能。

创始团队包括原腾讯TEG的AI专家、原天源迪科技术班底、清华精仪系的硬件专家以及CFDA器械认证法规专家。吴博曾经的导师唐远炎教授、皮肤科专家刘晓明教授、化工专家池永贵教授等也组成外部顾问团为其助阵。

随着公司业务的推进,吴博发现,皮肤检测相关AI接口,成为了公司最受欢迎的服务。

“这也让我们感觉诧异。毕竟与健康相关的图像分析里,脑部核磁、肿瘤CT的AI分析更像‘圣杯’。”吴博感慨道。

于是2018年,宜远智能推出了PaaS形式的AI开放平台(api.yimei.ai),侧重对面部皮肤图像进行AI分析,主要服务从皮肤病到生活美容再到整形的美业机构。

“公司的定位是医疗健康AI服务商,这个定位一直未变。只是打法因时因势发生了变化。”吴博介绍。

雷锋网了解到,目前宜远智能AI开放平台有大约50个接口,能对面部皮肤从近60个维度进行分析,接入的客户有将近400家。算上新增的细分接口,面部皮肤及整形美容级的特征维度将扩大到100以上。

医疗行业AI诊断落地难

逐渐成熟的人工智能技术和政策红利造就了医疗AI的火热,在多个细分领域,AI医疗呈现勃勃的的发展态势。

“从西医体系来看,检测已经成为医疗服务的标准入口了。看病前检查、拍片、化验等占到医疗环节收费大概百分之二十到三十。AI影像其实就是想为医生分担这部分工作。”吴博说道。

医疗天然的行业属性,决定了它是“人命关天”的事儿。同时,医疗行业门槛高、监管严格、产品落地周期长,也变成了AI医疗企业面临的普遍问题。

“AI医疗影像市场前景确实很大,但是规管严、周期长。单就CFDA认证这块,不说三类,就二类认证一般也要花上一年时间,而且这才是万里长征第一步。”

吴博表示,宜远智能团队偏互联网背景。在互联网行业,产品上线周期通常是七天到半个月。而在医疗领域,产品动辄就是几年的审批周期,这让团队感到落地推进不易。

医美AI的商业逻辑

万亿市场驱动产品定位

随着近年来皮肤疾病数量不断增加,消费者对外貌要求提高,不论是出于日常护理皮肤的需求,还是针对皮肤疾病进行早期干预,皮肤精确检测已经变成了人类追求美丽、维护健康的重要环节。

据行业数据统计,2017—2018年,美业消费总量达8500亿,美业就业人员总数为2700万,机构总数突破250万,美业市场规模达1.3万亿,年增速达到15.1%。

但吴博认为,目前国内美业软硬件AI程度还比较低。此前美图曾预告将要推出测肤API平台,但吴博认为其仅具备手机端面部皮肤分析接口,不能对接专业级分析仪,同时缺少皮肤病、整形美容科的专业接口。

聚焦万亿级美业市场中庞大的商用客户,宜远智能构建了ToB的AI开放平台,主打皮肤病、生活美容、医美整形三大相关领域。通过运用AI能力去服务软硬件合作方,提供云端AI支持。

”通过AI开放平台赋能给其他合作方。有任何想做测肤APP、小程序业务的,不用操心AI这摊子事,他放心去做营销,做市场。”

据雷锋网 (公众号:雷锋网) 了解,宜远智能AI平台拥有肤质检测、面部微特征、画像管理系统、精准推荐等AI接口,针对皮肤多维度健康状况,可以给出精准量化的科学建议。盈利模式主要分为两种,一是对外API平台调用的营收;二是帮助合作方完成除了开放平台以外的其他增值服务。

“目前平台接入的客户大概有四百个。我们今年的目标是扩大被使用量,争取做到盈利。”

吴博介绍,目前宜远智能合作方主要有四类:第一类是医学背景比较强的互联网医疗平台,依托平台自有流量导流;第二类是化妆品行业的生产商、销售商,会在品牌旗舰店增加AI分析入口;第三类是硬件合作方;第四是诸如美容院一类的美业管理系统供应商。

AI算法训练需要大量临床数据做支撑。据吴博介绍,宜远智能算法数据有多种来源,算法训练可分为两个阶段。

在冷启动阶段,宜远智能和皮肤管理中心、皮肤专科医院等形成合作,基于数十万高清及精标数据建模。到第二阶段,平台已经形成千万级数据增长、模型增强的良性自循环。

吴博表示,面部皮肤、放射影像分析,都有多目标(多病种)的特点。平台算法训练除了遵循机器学习的经典步骤以外,在训练面部皮肤多达上百种学习目标时,“分而治之”为核心任务特制模型的做法尤为必要。

另外,由于AI模型要对外提供API,面临模型需要尽可能优化、精简,还要能处理公众服务数据源更多变异特例的情形。为此宜远智能还研发了一套自有的目标检测框架,并在《人工智能》杂志上发表。

“API平台数据、算法打磨好,做好样板,才有利于我们口碑传播。目前我们已经有接近四百家客户,后续会互联网方式推广。”吴博说道。

医美AI的商业逻辑

技术挑战与未来软硬件联动

利用AI进行皮肤分析,不少人认为人脸识别四小龙可以分分钟解决。吴博不以为然,他认为这些独角兽们并不能满足美业客户的需求。原因在于,皮肤检测处在一个非常细分的业务领域。

吴博介绍,安防、零售、金融领域的人脸识别技术更像是单目标任务,聚焦于回答A是不是A(1:1)或者能不能找到A(1:N)。

而面部皮肤分析是多目标组合任务,用户会关心面部皮肤有无疾恙、黑眼圈属于哪种类型、斑点的种类及大小变化、面部畸形的程度等上百种问题。

加上皮肤病的谱系广,有大概两千多种。每一种分析要做好,都需要AI建模,而单个需求的难度就和人脸识别不相上下。

“为什么这么说呢?举个例子,即使没有专业训练,靠人眼分辨做人脸识别的水平也有95%,但识别黑眼圈的四种分类,或者对鲍曼医生皮肤16分型的判别,平常人远没有95%的水平。”吴博说。

对于AI赋能美业,除了AI皮肤分析技术难度较高以外,吴博表示目前行业标准还未统一。

“现在全国大概百万家美容院,检测仪器持有量也就二三十万台,被我们AI改造的皮肤检测仪的出货量也只在两三万台水平,普及率还不够。另外这个行业它没有医疗领域的强制性,也没有医疗领域足够的权威性,从业者水平参差不齐的情况比较严重。所以行业空白和天花板都还是挺大挺高的。”

据雷锋网了解,对于宜远智能下一步计划,吴博介绍目前在研的产品包括更自助、更傻瓜式的一键生成系统。

“我们将推出一键生成测肤小程序的模块,将API的使用门槛降低,使得AI平民化、产品上线快速化。目前我们在研的产品有类似谷歌的AutoML模块,可使医疗健康及美业有兴趣对机器学习、深度学习自助体验,完成数据整理、标注、自动建模、迭代的全AI流程。

对于人工智能在美业领域的落地,吴博认为,AI皮肤检测已经到了需要技术、硬件、消费者意识等齐头并进的阶段。单单AI技术做得再好,也没有办法很好地识别图像,落地服务机构。

“零零星星能看到一些国际大品牌在做类似这个事情,但目前开放式平台都还在路上。像我们这样比较专注于提供基础AI服务的还很少。未来AI皮肤检测普及,还是需要软硬件厂商以及消费者的共同努力。”吴博说道。

雷锋网原创文章,未经授权禁止转载。详情见 转载须知


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

An Introduction to the Analysis of Algorithms

An Introduction to the Analysis of Algorithms

Robert Sedgewick、Philippe Flajolet / Addison-Wesley Professional / 1995-12-10 / CAD 67.99

This book is a thorough overview of the primary techniques and models used in the mathematical analysis of algorithms. The first half of the book draws upon classical mathematical material from discre......一起来看看 《An Introduction to the Analysis of Algorithms》 这本书的介绍吧!

html转js在线工具
html转js在线工具

html转js在线工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具