Hadoop排序

栏目: 编程工具 · 发布时间: 5年前

内容简介:Hadoop排序,从大的范围来说有两种排序,一种是按照key排序,一种是按照value排序。如果按照value排序,只需在map函数中将key和value对调,然后在reduce函数中在对调回去。从小范围来说排序又分成部分排序,全局排序,辅助排序,二次排序等。本文介绍如何在Hadoop中实现全局排序。全局排序,就是说在一个MapReduce程序产生的输出文件中,所有的结果都是按照某个策略进行排序的,例如降序还是升序。MapReduce只能保证一个分区内的数据是key有序的,一个分区对应一个reduce,因此

转载来源

Hadoop排序,从大的范围来说有两种排序,一种是按照key排序,一种是按照value排序。如果按照value排序,只需在map函数中将key和value对调,然后在reduce函数中在对调回去。从小范围来说 排序 又分成部分排序,全局排序,辅助排序,二次排序等。本文介绍如何在Hadoop中实现全局排序。

全局排序,就是说在一个MapReduce程序产生的输出文件中,所有的结果都是按照某个策略进行排序的,例如降序还是升序。MapReduce只能保证一个分区内的数据是key有序的,一个分区对应一个reduce,因此只有一个reduce就保证了数据全局有序,但是这样又不能用到Hadoop集群的优势。

对于多个reduce如何保证数据的全局排序呢?通常的做法是按照key值分区,通过MapReduce的默认分区函数HashPartition将不同范围的key发送到不同的reduce处理,例如一个文件中有key值从1到10000的数据,我们使用两个分区,将1到5000的key发送到partition1,然后由reduce1处理,5001到10000的key发动到partition2然后由reduce2处理,reduce1中的key是按照1到5000的升序排序,reduce2中的key是按照5001到10000的升序排序,这样就保证了整个MapReduce程序的全局排序。但是这样做有两个缺点:

1、当数据量大时会出现OOM。

2、会出现数据倾斜。

Hadoop提供TotalOrderPartitioner类用于实现全局排序的功能,并且解决了OOM和数据倾斜的问题。

TotalOrderPartitioner类提供了数据采样器,对key值进行部分采样,然后按照采样结果寻找key值的最佳分割点,将key值均匀的分配到不同的分区中。

TotalOrderPartitioner 类提供了三个采样器,分别是:

  • SplitSampler 分片采样器,从数据分片中采样数据,该采样器不适合已经排好序的数据
  • RandomSampler随机采样器,按照设置好的采样率从一个数据集中采样
  • IntervalSampler间隔采样机,以固定的间隔从分片中采样数据,对于已经排好序的数据效果非常好。

三个采样器都实现了K[] getSample(InputFormat inf, Job job)方法,该方法返回的是K[]数组,数组中存放的是根据采样结果返回的key值,即分隔点,MapRdeuce就是根据K[]数组的长度N生成N-1个分区partition数量,然后按照分割点的范围将对应的数据发送到对应的分区中。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

蚂蚁金服

蚂蚁金服

廉薇、边慧、苏向辉、曹鹏程 / 中国人民大学出版社 / 2017-7 / 59.00

打开支付宝,我们不但可以用手机即时付款,给好友转账,为信用卡还款,购买水、电、天然气,还可以办理出国购物退税;因为余额宝,我们可以开始打理手中的零用钱,随时随地进行理财;因为芝麻信用,我们感受到信用为我们带来的信任、尊严与方便——免押金租车、租房、骑行。从支付宝到蚂蚁金服,可以毫不夸张地说,一家企业改变了我们的生活。 蚂蚁金服无疑是目前中国最具代表性的金融科技巨头,同时也是全球估值最高的金融......一起来看看 《蚂蚁金服》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

随机密码生成器
随机密码生成器

多种字符组合密码

html转js在线工具
html转js在线工具

html转js在线工具