JAVA线程池原理详解(2)

栏目: Java · 发布时间: 7年前

内容简介:JAVA线程池原理详解(2)

JAVA线程池原理详解(2)

推荐阅读

    微服务: springboot系列教程学习

    源码: Javaweb练手项目源码下载

    调优: 十五篇好文回顾

    面试笔试: 面试笔试整理系列

Executor框架的两级调度模型

在HotSpot VM的模型中,JAVA线程被一对一映射为本地操作系统线程。JAVA线程启动时会创建一个本地操作系统线程,当 JAVA 线程终止时,对应的操作系统线程也被销毁回收,而操作系统会调度所有线程并将它们分配给可用的CPU。

在上层,JAVA程序会将应用分解为多个任务,然后使用应用级的调度器(Executor)将这些任务映射成固定数量的线程;在底层,操作系统内核将这些线程映射到硬件处理器上。

Executor框架类图

JAVA线程池原理详解(2)

在前面介绍的JAVA线程既是工作单元,也是执行机制。而在Executor框架中,我们将工作单元与执行机制分离开来。Runnable和Callable是工作单元(也就是俗称的任务),而执行机制由Executor来提供。这样一来Executor是基于生产者消费者模式的,提交任务的操作相当于生成者,执行任务的线程相当于消费者。

1、从类图上看,Executor接口是异步任务执行框架的基础,该框架能够支持多种不同类型的任务执行策略。

public interface Executor {
    void execute(Runnable command);
}

Executor接口就提供了一个执行方法,任务是Runnbale类型,不支持Callable类型。

2、ExecutorService接口实现了Executor接口,主要提供了关闭线程池和submit方法:

public interface ExecutorService extends Executor {
    List<Runnable> shutdownNow();
    boolean isTerminated();
    <T> Future<T> submit(Callable<T> task);
 }

另外该接口有两个重要的实现类:ThreadPoolExecutor与ScheduledThreadPoolExecutor。

其中ThreadPoolExecutor是线程池的核心实现类,用来执行被提交的任务;而ScheduledThreadPoolExecutor是一个实现类,可以在给定的延迟后运行任务,或者定期执行命令。

在上一篇文章中,我是使用ThreadPoolExecutor来通过给定不同的参数从而创建自己所需的线程池,但是在后面的工作中不建议这种方式,推荐使用Exectuors工厂方法来创建线程池。

这里先来区别线程池和线程组(ThreadGroup与ThreadPoolExecutor)这两个概念:

a、线程组就表示一个线程的集合。

b、线程池是为线程的生命周期开销问题和资源不足问题提供解决方案,主要是用来管理线程。

Executors可以创建3种类型的ThreadPoolExecutor:

  • SingleThreadExecutor

  • FixedThreadExecutor

  • CachedThreadPool

a、SingleThreadExecutor:单线程线程池

ExecutorService threadPool = Executors.newSingleThreadExecutor();
public static ExecutorService newSingleThreadExecutor() {
     return new FinalizableDelegatedExecutorService
          (new ThreadPoolExecutor(1, 1,
               0L, TimeUnit.MILLISECONDS,
               new LinkedBlockingQueue<Runnable>()));
    }

我们从源码来看可以知道,单线程线程池的创建也是通过ThreadPoolExecutor,里面的核心线程数和线程数都是1,并且工作队列使用的是无界队列。由于是单线程工作,每次只能处理一个任务,所以后面所有的任务都被阻塞在工作队列中,只能一个个任务执行。

b、FixedThreadExecutor:固定大小线程池

ExecutorService threadPool = Executors.newFixedThreadPool(5);
public static ExecutorService newFixedThreadPool(int nThreads) {
     return new ThreadPoolExecutor(nThreads, nThreads,
             0L, TimeUnit.MILLISECONDS,
             new LinkedBlockingQueue<Runnable>());
    }

这个与单线程类似,只是创建了固定大小的线程数量。

c、CachedThreadPool:无界线程池

ExecutorService threadPool = Executors.newCachedThreadPool();
public static ExecutorService newCachedThreadPool() {
      return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
              60L, TimeUnit.SECONDS,
              new SynchronousQueue<Runnable>());
    }

无界线程池意味着没有工作队列,任务进来就执行,线程数量不够就创建,与前面两个的区别是:空闲的线程会被回收掉,空闲的时间是60s。这个适用于执行很多短期异步的小程序或者负载较轻的服务器。

Callable、Future、FutureTash详解

Callable与Future是在JAVA的后续版本中引入进来的,Callable类似于Runnable接口,实现Callable接口的类与实现Runnable的类都是可以被线程执行的任务。

三者之间的关系:

  • Callable是Runnable封装的异步运算任务。

  • Future用来保存Callable异步运算的结果

  • FutureTask封装Future的实体类

1、Callable与Runnbale的区别

a、Callable定义的方法是call,而Runnable定义的方法是run。

b、call方法有返回值,而run方法是没有返回值的。

c、call方法可以抛出异常,而run方法不能抛出异常。

2、Future

Future表示异步计算的结果,提供了以下方法,主要是判断任务是否完成、中断任务、获取任务执行结果。

public interface Future<V> {
    boolean cancel(boolean mayInterruptIfRunning);
    boolean isCancelled();
    boolean isDone();
    V get() throws InterruptedException, ExecutionException;
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

3、FutureTask

可取消的异步计算,此类提供了对Future的基本实现,仅在计算完成时才能获取结果,如果计算尚未完成,则阻塞get方法。

public class FutureTask<V> implements RunnableFuture<V>
public interface RunnableFuture<V> extends Runnable, Future<V>

FutureTask不仅实现了Future接口,还实现了Runnable接口,所以不仅可以将FutureTask当成一个任务交给Executor来执行,还可以通过Thread来创建一个线程。

Callable与FutureTask

定义一个callable的任务:

public class MyCallableTask implements Callable<Integer>
{
    @Override
    public Integer call()
        throws Exception
    {
        System.out.println("callable do somothing");
        Thread.sleep(5000);
        return new Random().nextInt(100);
    }
}
public class CallableTest
{
   public static void main(String[] args) throws Exception
   {
       Callable<Integer> callable = new MyCallableTask();
       FutureTask<Integer> future = new FutureTask<Integer>(callable);
       Thread thread = new Thread(future);
       thread.start();
       Thread.sleep(100);
       //尝试取消对此任务的执行
       future.cancel(true);
       //判断是否在任务正常完成前取消
       System.out.println("future is cancel:" + future.isCancelled());
       if(!future.isCancelled())
       {
           System.out.println("future is cancelled");
       }
       //判断任务是否已完成
       System.out.println("future is done:" + future.isDone());
       if(!future.isDone())
       {
           System.out.println("future get=" + future.get());
       }
       else
       {
           //任务已完成
           System.out.println("task is done");
       }
   }
}

执行结果:

callable do somothing
future is cancel:true
future is done:true
task is done

这个DEMO主要是通过调用FutureTask的状态设置的方法,演示了状态的变迁。

a、第11行,尝试取消对任务的执行,该方法如果由于任务已完成、已取消则返回false,如果能够取消还未完成的任务,则返回true,该DEMO中由于任务还在休眠状态,所以可以取消成功。

future.cancel(true);

b、第13行,判断任务取消是否成功:如果在任务正常完成前将其取消,则返回true

System.out.println("future is cancel:" + future.isCancelled());

c、第19行,判断任务是否完成:如果任务完成,则返回true,以下几种情况都属于任务完成:正常终止、异常或者取消而完成。

我们的DEMO中,任务是由于取消而导致完成。

System.out.println("future is done:" + future.isDone());

d、在第22行,获取异步线程执行的结果,我这个DEMO中没有执行到这里,需要注意的是,future.get方法会阻塞当前线程, 直到任务执行完成返回结果为止。

System.out.println("future get=" + future.get());

Callable与Future

public class CallableThread implements Callable<String>
{
    @Override
    public String call()
        throws Exception
    {
        System.out.println("进入Call方法,开始休眠,休眠时间为:" + System.currentTimeMillis());
        Thread.sleep(10000);
        return "今天停电";
    }
    
    public static void main(String[] args) throws Exception
    {
        ExecutorService es = Executors.newSingleThreadExecutor();
        Callable<String> call = new CallableThread();
        Future<String> fu = es.submit(call);
        es.shutdown();
        Thread.sleep(5000);
        System.out.println("主线程休眠5秒,当前时间" + System.currentTimeMillis());
        String str = fu.get();
        System.out.println("Future已拿到数据,str=" + str + ";当前时间为:" + System.currentTimeMillis());
    }
}

执行结果:

进入Call方法,开始休眠,休眠时间为:1478606602676
主线程休眠5秒,当前时间1478606608676
Future已拿到数据,str=今天停电;当前时间为:1478606612677

这里的future是直接扔到线程池里面去执行的。由于要打印任务的执行结果,所以从执行结果来看,主线程虽然休眠了5s,但是从Call方法执行到拿到任务的结果,这中间的时间差正好是10s,说明get方法会阻塞当前线程直到任务完成。

通过FutureTask也可以达到同样的效果:

public static void main(String[] args) throws Exception
    {
      ExecutorService es = Executors.newSingleThreadExecutor();
      Callable<String> call = new CallableThread();
      FutureTask<String> task = new FutureTask<String>(call);
      es.submit(task);
      es.shutdown();
      Thread.sleep(5000);
      System.out.println("主线程等待5秒,当前时间为:" + System.currentTimeMillis());
      String str = task.get();
      System.out.println("Future已拿到数据,str=" + str + ";当前时间为:" + System.currentTimeMillis());
    }

以上的组合可以给我们带来这样的一些变化:

如有一种场景中,方法A返回一个数据需要10s,A方法后面的代码运行需要20s,但是这20s的执行过程中,只有后面10s依赖于方法A执行的结果。如果与以往一样采用同步的方式,势必会有10s的时间被浪费,如果采用前面两种组合,则效率会提高:

  • 先把A方法的内容放到Callable实现类的call()方法中

  • 在主线程中通过线程池执行A任务

  • 执行后面方法中10秒不依赖方法A运行结果的代码

  • 获取方法A的运行结果,执行后面方法中10秒依赖方法A运行结果的代码

这样代码执行效率一下子就提高了,程序不必卡在A方法处。

来源:博客园
原文:http://www.cnblogs.com/dongguacai/p/6038960.html

JAVA线程池原理详解(2)


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

程序与民主

程序与民主

皮罗·克拉玛德雷 / 翟小波 / 高等教育 / 2005-3 / 8.20元

《程序与民主》是意大利著名政治学家、法学家皮罗·克拉玛德雷(Pierocalamandrei)(1889-1956)讨论现代诉讼程序的著作。该书篇幅虽小,但影响甚大。国内对该著者及其作品的介绍较少,倒是其弟子卡佩莱蒂的著作已有中文译本:《当事人基本程序保障权与未来的民事诉讼》,徐昕译,法律出版社2000年版。《程序与民主》一书,并非平行地讨论程序和民主,而是从程序的视角讨论民主。这里的民主,也不是......一起来看看 《程序与民主》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换