- 授权协议: Apache
- 开发语言: Python
- 操作系统: 跨平台
- 软件首页: https://github.com/apache/airflow
- 软件文档: https://airflow.apache.org/
软件介绍
Airflow 被 Airbnb 内部用来创建、监控和调整数据管道。任何工作流都可以在这个使用 Python 编写的平台上运行(目前加入 Apache 基金会孵化器)。
Airflow 允许工作流开发人员轻松创建、维护和周期性地调度运行工作流(即有向无环图或成为DAGs)的工具。在Airbnb中,这些工作流包括了如数据存储、增长分析、Email发送、A/B测试等等这些跨越多部门的用例。这个平台拥有和
Hive、Presto、MySQL、HDFS、Postgres和S3交互的能力,并且提供了钩子使得系统拥有很好地扩展性。除了一个命令行界面,该工具还提供了一个 基于Web的用户界面让您可以可视化管道的依赖关系、监控进度、触发任务等。
Airflow 包含如下组件:
一个元数据库(MySQL或Postgres)
一组Airflow工作节点
一个调节器(Redis或RabbitMQ)
一个Airflow Web服务器
截图:

管道定义示例:
"""
Code that goes along with the Airflow tutorial located at:
https://github.com/airbnb/airflow/blob/master/airflow/example_dags/tutorial.py
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2015, 6, 1),
'email': ['airflow@airflow.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
# 'queue': 'bash_queue',
# 'pool': 'backfill',
# 'priority_weight': 10,
# 'end_date': datetime(2016, 1, 1),
}
dag = DAG('tutorial', default_args=default_args)
# t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(
task_id='print_date',
bash_command='date',
dag=dag)
t2 = BashOperator(
task_id='sleep',
bash_command='sleep 5',
retries=3,
dag=dag)
templated_command = """
{% for i in range(5) %}
echo "{{ ds }}"
echo "{{ macros.ds_add(ds, 7)}}"
echo "{{ params.my_param }}"
{% endfor %}
"""
t3 = BashOperator(
task_id='templated',
bash_command=templated_command,
params={'my_param': 'Parameter I passed in'},
dag=dag)
t2.set_upstream(t1)
t3.set_upstream(t1)
程序员的算法趣题
[ 日] 增井敏克 / 绝 云 / 人民邮电出版社 / 2017-7 / 55.00元
本书是一本解谜式的趣味算法书,从实际应用出发,通过趣味谜题的解谜过程,引导读者在愉悦中提升思维能力、掌握算法精髓。此外,本书作者在谜题解答上,通过算法的关键原理讲解,从思维细节入手,发掘启发性算法新解,并辅以Ruby、JavaScript等不同语言编写的源代码示例,使读者在算法思维与编程实践的分合之间,切实提高编程能力。 本书适合已经学习过排序、搜索等知名算法,并想要学习更多有趣算法以提升编程技巧......一起来看看 《程序员的算法趣题》 这本书的介绍吧!
