大数据机器学习框架(弥勒佛) MLF

码农软件 · 软件分类 · 大数据 · 2020-02-13 16:57:35

软件介绍

让天下没有难做的大数据模型!

功能

下面是弥勒佛框架解决的问题类型,括号中的斜体代表尚未实现以及预计实现的时间

  • 监督式学习:最大熵分类模型(max entropy classifier),决策树模型(decision tree based models,2014 Q1

  • 非监督式学习:聚类问题(k-means,2014 Q1

  • 在线学习:在线梯度递降模型(online stochastic gradient descent)

  • 神经网络(2014 Q2/3

项目实现了下面的组件

    现有的机器学习框架/软件包存在几个问题:

  • 无法处理大数据:多数Python,Matlab和R写的训练框架适合处理规模小的样本,没有为大数据优化。

  • 不容易整合到实际生产系统:standalone的程序无法作为library嵌入到大程序中。

  • 模型单一:一个软件包往往只解决一个类型的问题(比如监督式或者非监督式)。

  • 不容易扩展:设计时没有考虑可扩展性,难以添加新的模型和组件。

  • 代码质量不高:代码缺乏规范,难读懂、难维护。

    弥勒佛项目的诞生就是为了解决上面的问题,在框架设计上满足了下面几个需求:

  • 处理大数据:可随业务增长scale up,无论你的数据样本是1K还是1B规模,都可使用弥勒佛项目。

  • 为实际生产:模型的训练和使用都可以作为library或者service整合到在生产系统中。

  • 丰富的模型:容易尝试不同的模型,在监督、非监督和在线学习等模型间方便地切换。

  • 高度可扩展:容易添加新模型,方便地对新模型进行实验并迅速整合到生产系统中。

  • 高度可读性:代码规范,注释和文档尽可能详尽,适合初学者进行大数据模型的学习。

本文地址:https://codercto.com/soft/d/25536.html

技术管理之巅

技术管理之巅

黄哲铿 / 电子工业出版社 / 2015-6 / 49.00元

《技术管理之巅——如何从零打造高质效互联网技术团队?》为您解密国内顶级互联网公司技术团队管理的精髓。作者结合自己十余年在国内知名互联网公司MySteel、1号店等担任PMO总监、技术总监的丰富经验,进行归纳和总结。书中围绕着技术管理中的热点“如何搭建扁平化、去中心化的技术团队”、“大数据下的技术管理创新”、“目标管理方法OKR”、“阿米巴生产模式”、“Scrum和Kanban的实践”逐渐展开,从技......一起来看看 《技术管理之巅》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

SHA 加密
SHA 加密

SHA 加密工具