- 授权协议: MIT
- 开发语言: C/C++ Python
- 操作系统: 跨平台
- 软件首页: https://github.com/Microsoft/LightGBM
- 软件文档: https://github.com/Microsoft/LightGBM/blob/master/README.md
- 官方下载: https://github.com/Microsoft/LightGBM/archive/master.zip
软件介绍
LightGBM(Light Gradient Boosting Machine) 是微软开源的一个实现 GBDT 算法的框架,支持高效率的并行训练。
GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT 在工业界应用广泛,通常被用于点击率预测,搜索排序等任务。GBDT 也是各种数据挖掘竞赛的致命武器,据统计 Kaggle 上的比赛有一半以上的冠军方案都是基于 GBDT。
LightGBM 提出的主要原因是为了解决 GBDT 在海量数据遇到的问题,让 GBDT 可以更好更快地用于工业实践。其具有以下优点:
更快的训练速度
更低的内存消耗
更好的准确率
分布式支持,可以快速处理海量数据
构建高性能Web站点
郭欣 / 电子工业出版社 / 2009-8 / 59.00元
本书围绕如何构建高性能Web站点,从多个方面、多个角度进行了全面的阐述,涵盖了Web站点性能优化的几乎所有内容,包括数据的网络传输、服务器并发处理能力、动态网页缓存、动态网页静态化、应用层数据缓存、分布式缓存、Web服务器缓存、反向代理缓存、脚本解释速度、页面组件分离、浏览器本地缓存、浏览器并发请求、文件的分发、数据库I/O优化、数据库访问、数据库分布式设计、负载均衡、分布式文件系统、性能监控等。......一起来看看 《构建高性能Web站点》 这本书的介绍吧!
