- 授权协议: GPL
- 开发语言: C/C++
- 操作系统: 跨平台
- 软件首页: http://www.coreseek.cn/opensource/mmseg/
软件介绍
LibMMSeg 简介
LibMMSeg 是Coreseek.com为 Sphinx 全文搜索引擎设计的中文分词软件包,其在GPL协议下发行的中文分词法,采用Chih-Hao Tsai的MMSEG算法。
MMSEG: A Word Identification System for Mandarin Chinese Text Based on Two Variants of the Maximum Matching Algorithm
Published: 1996-04-29
Updated: 1998-03-06
Document updated: 2000-03-12
License: Free for noncommercial use
Copyright 1996-2006 Chih-Hao Tsai (Email: hao520 at yahoo.com )
您可以在Chih-Hao Tsai's Technology Page找到算法的原文。
LibMMSeg 采用C++开发,同时支持Linux平台和Windows平台,切分速度大约在300K/s(PM-1.2G),截至当前版本(0.7.1)LibMMSeg没有为速度仔细优化过,进一步的提升切分速度应仍有空间。
下载
下载 MMSeg 0.7.3
修订记录
0.7.3
- 2008.05.27 修正 Makefile 无法安装csr_typedefs.h的问题
- 2008.05.27 修正 x64系统上编译无法作为动态库的一部分编译的问题
0.7.2
- 2008.05.19 修正 指定的目录中无词典不提示错误的问题
- 2008.05.19 新增 Ruby 的调用API
0.7.1
- 2008.04.23 修正了在类似 “english 中文 english" 的句子,切分不正确的问题
0.7
- 第一次发行
安装
Window平台
打开源码包中src\win32 子目录下的对应的工程文件,目前LibMMSeg内置了VS2003和VS2005的工程文件。
Linux平台
在源码包根目录下执行:
./configure && make && make install
使用
词典的构造
mmseg -u unigram.txt
该命令执行后,将会产生一个名为unigram.txt.uni的文件,将该文件改名为uni.lib,完成词典的构造。需要注意的是,unigram.txt 必须为UTF-8编码。
词典文件格式:
....
河 187
x:187
造假者 1
x:1
台北队 1
x:1
湖边 1
......
其中,每条记录分两行。其中,第一行为词项,其格式为:[词条]\t[词频率]。需要注意的是,对于单个字后面跟这个字作单字成词的频率,这个频率 需要在大量的预先切分好的语料库中进行统计,用户增加或删除词时,一般不需要修改这个数值;对于非单字词,词频率处必须为1。第二行为占位项,是由于 LibMMSeg库的代码是从Coreseek其他的分词算法库(N-gram模型)中改造而来的,在原来的应用中,第二行为该词在各种词性下的分布频 率。LibMMSeg的用户只需要简单的在第二行处填"x:1"即可。
用户可以通过修改词典文件增加自己的自定义词,以提高分词法在某一具体领域的切分精度,系统默认的词典文件在data/unigram.txt中。
分词
mmseg -d tobe_segment.txt
其中,命令使用‘-d’开关指定词库文件所在的位置,参数dict_dir为词库文件(uni.lib )所在的目录;tobe_segment.txt 为待切分的文本文件,必须为UTF-8编码。如果一切正确,mmseg会将切分结果以及所花费的时间显示到标准输出上。
对特殊短语的支持
由于LibMMSeg是为Sphinx全文搜索引擎设计的,因此其内置了部分搜索引擎切分算法的特性,主要表现在对特殊短语的支持上。
在搜索引擎中,需要处理C++时,如果分词器中没有词组C++,则将被切分为C/x +/x +/x,在进一步的检索中,可能每个词会由于出现的过于频繁而被过滤掉,导致搜索的结果与C++相关度不高不说,也严重影响的全文搜索的速度。在 LibMMSeg中,内置对特殊短语的支持。
其输入文件格式如下
// test commit
.net => dotnet
c# => csharp
c++ => cplusplus
其中左侧是待支持的特殊短语,右侧是左侧的特殊短语需要被转换为的短语。这一转换在分词前进行。
可以在行的开头加入'//'作为注释符号,发现符号'//'后,整行将被忽略。
特殊短语词库构造命令:
mmseg -b exceptions.txt
其中, 开关'-b'指示mmseg是要构造特殊短语词库;exceptions.txt是用户编辑的特殊短语转换规则。
该命令执行后,将在当前目录下产生一个名为"synonyms.dat"的文件,将该文件放在"uni.lib"同一目录下,分词系统将自动启动特殊短语转换功能。
注意:
1、在启用了该功能后,如果分词系统发现了一个特殊短语,将直接输出其在右侧对应的替换的值;
2、右侧被替换的值,请保证不会被分词器进行切分。(eg. C++ => C# 这个转换的意义不大,并且可能导致C++这个短语永远无法被检索到!)
附录:
MMSeg算法说明
首先来理解一下chunk,它是MMSeg分词算法中一个关键的概念。Chunk中包含依据上下文分出的一组词和相关的属性,包括长度 (Length)、平均长度(Average Length)、标准差的平方(Variance)和自由语素度(Degree Of Morphemic Freedom)。下面列出了这4个属性:
| 属性 | 含义 |
| 长度(Length) | chuck中各个词的长度之和 |
| 平均长度(Average Length) | 长度(Length)/词数 |
| 标准差的平方(Variance) | 同数学中的定义 |
| 自由语素度(Degree Of Morphemic Freedom) | 各单字词词频的对数之和 |
Chunk中的4个属性只有在需要该属性的值时才进行计算,而且只计算一次。
其次来理解一下规则(Rule),它是MMSeg分词算法中的又一个关键的概念。实际上我们可以将规则理解为一个过滤器(Filter),过滤掉不符合要求的chunk。MMSeg分词算法中涉及了4个规则:
- 规则1:取最大匹配的chunk (Rule 1: Maximum matching)
- 规则2:取平均词长最大的chunk (Rule 2: Largest average word length)
- 规则3:取词长标准差最小的chunk (Rule 3: Smallest variance of word lengths)
- 规则4:取单字词自由语素度之和最大的chunk (Rule 4: Largest sum of degree of morphemic freedom of one-character words)
这4个规则符合汉语成词的基本习惯。
再来理解一下匹配方式复杂最大匹配(Complex maximum matching):
复杂最大匹配先使用规则1来过滤chunks,如果过滤后的结果多于或等于2,则使用规则2继续过滤,否则终止过滤过程。如果使用规则2得到的过滤 结果多于或等于2,则使用规则3继续过滤,否则终止过滤过程。如果使用规则3得到的过滤结果多于或等于2,则使用规则4继续过滤,否则终止过滤过程。如果 使用规则 4得到的过滤结果多于或等于2,则抛出一个表示歧义的异常,否则终止过滤过程。
最后通过一个例句--“研究生命起源来简述”一下复杂最大匹配的分词过程。MMSeg分词算法会得到7个chunk,分别为:
| 编号 | chunk | 长度 |
| 0 | 研_究_生 | 3 |
| 1 | 研_究_生命 | 4 |
| 2 | 研究_生_命 | 4 |
| 3 | 研究_生命_起 | 5 |
| 4 | 研究_生命_起源 | 6 |
| 5 | 研究生_命_起 | 5 |
| 6 | 研究生_命_起源 | 6 |
使用规则1过滤后得到2个chunk,如下:
| 编号 | chunk | 长度 |
| 4 | 研究_生命_起源 | 6 |
| 6 | 研究生_命_起源 | 6 |
计算平均长度后为:
| 编号 | chunk | 长度 | 平均长度 |
| 4 | 研究_生命_起源 | 6 | 2 |
| 6 | 研究生_命_起源 | 6 | 2 |
使用规则2过滤后得到2个chunk,如下:
| 编号 | chunk | 长度 | 平均长度 |
| 4 | 研究_生命_起源 | 6 | 2 |
| 6 | 研究生_命_起源 | 6 | 2 |
计算标准差的平方后为:
| 编号 | chunk | 长度 | 平均长度 | 标准差的平方 |
| 4 | 研究_生命_起源 | 6 | 2 | 0 |
| 6 | 研究生_命_起源 | 6 | 2 | 4/9 |
使用规则3过滤后得到1个chunk,如下:
| 编号 | chunk | 长度 | 平均长度 | 标准差的平方 |
| 4 | 研究_生命_起源 | 6 | 2 | 0 |
匹配过程终止。最终取“研究”成词,以相同的方法继续处理“生命起源”。
分词效果:
研究_生命_起源_
研究生_教育_
Python for Data Analysis
Wes McKinney / O'Reilly Media / 2012-11-1 / USD 39.99
Finding great data analysts is difficult. Despite the explosive growth of data in industries ranging from manufacturing and retail to high technology, finance, and healthcare, learning and accessing d......一起来看看 《Python for Data Analysis》 这本书的介绍吧!
