C++ 的机器学习库 MLPACK

码农软件 · 软件分类 · 机器学习/深度学习 · 2019-08-07 12:44:29

软件介绍

mlpack是一个C++的机器学习库,它重点在于其扩展性、高速性和易用性。它的目的是让新用户通过简单、一致的API使用机器学习,同时为专业用户提供C++的高性能和最大灵活性。他的性能超出大量类似的机器学习库,如WEKA、Shogun、MATLAB、mlpy及sklearn,这一对比工作可以参考文献[1]。

mlpack含有丰富的文档和教程,可以参考项目主页。教程中包含的算法有:近邻搜索(NeighborSearch)、范围搜索(RangeSearch)、线性回归(LinearRegression)、欧几里德最小生成树(The Euclidean Minimum Spanning Tree)、K-均值(K-Means)、FastMKS(Fast max-kernel search)等。

mlpack提供了大量的类或API供程序调用,同时还提供了很多可执行程序供不懂C++的用户使用。这些可执行文件包括:allkfn, allknn, emst, gmm, hmm_train, hmm_loglik, hmm_viterbi, hmm_generate, kernel_pca, kmeans, lars, linear_regression, local_coordinate_coding, mvu, nbc, nca, pca, radical, sparse_coding。

示例代码:

#include<mlpack/methods/range_search/range_search.hpp>using namespace mlpack::range;

// Our dataset matrix, which is column-major.
extern arma::mat dataset;

// The 'true' option indicates that we will use naive calculation.
RangeSearch<> a(dataset, true);

// The vector-of-vector objects we will store output in.
std::vector> resultingNeighbors;
std::vector> resultingDistances;

// The range we will use.  The upper bound is DBL_MAX.
math::Range r(5.0, DBL_MAX); // [5.0, inf).

a.Search(r, resultingNeighbors, resultingDistances);

本文地址:https://codercto.com/soft/d/11839.html

奥美的数字营销观点

奥美的数字营销观点

[美] 肯特·沃泰姆、[美] 伊恩·芬威克 / 台湾奥美互动营销公司 / 中信出版社 / 2009-6 / 45.00元

目前,媒体的数字化给营销人带来了重大影响。新媒体世界具有多重特性,它赋予企业大量机会,同时也带来挑战。营销人有了数量空前的方式来与消费者互动。然而,许多人面对变革的速度感到压力巨大,而且不知道该如何完全发挥这些新选择所带来的优势。 本书为读者提供了如何运用主要数字媒体渠道的方法;随附了领先的营销人如何在工作中有效运用这些渠道的最佳案例;提供了数字营销的十二个基本原则;协助数字营销人了解什么是......一起来看看 《奥美的数字营销观点》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

MD5 加密
MD5 加密

MD5 加密工具