C++ 的机器学习库 MLPACK

码农软件 · 软件分类 · 机器学习/深度学习 · 2019-08-07 12:44:29

软件介绍

mlpack是一个C++的机器学习库,它重点在于其扩展性、高速性和易用性。它的目的是让新用户通过简单、一致的API使用机器学习,同时为专业用户提供C++的高性能和最大灵活性。他的性能超出大量类似的机器学习库,如WEKA、Shogun、MATLAB、mlpy及sklearn,这一对比工作可以参考文献[1]。

mlpack含有丰富的文档和教程,可以参考项目主页。教程中包含的算法有:近邻搜索(NeighborSearch)、范围搜索(RangeSearch)、线性回归(LinearRegression)、欧几里德最小生成树(The Euclidean Minimum Spanning Tree)、K-均值(K-Means)、FastMKS(Fast max-kernel search)等。

mlpack提供了大量的类或API供程序调用,同时还提供了很多可执行程序供不懂C++的用户使用。这些可执行文件包括:allkfn, allknn, emst, gmm, hmm_train, hmm_loglik, hmm_viterbi, hmm_generate, kernel_pca, kmeans, lars, linear_regression, local_coordinate_coding, mvu, nbc, nca, pca, radical, sparse_coding。

示例代码:

#include<mlpack/methods/range_search/range_search.hpp>using namespace mlpack::range;

// Our dataset matrix, which is column-major.
extern arma::mat dataset;

// The 'true' option indicates that we will use naive calculation.
RangeSearch<> a(dataset, true);

// The vector-of-vector objects we will store output in.
std::vector> resultingNeighbors;
std::vector> resultingDistances;

// The range we will use.  The upper bound is DBL_MAX.
math::Range r(5.0, DBL_MAX); // [5.0, inf).

a.Search(r, resultingNeighbors, resultingDistances);

本文地址:https://codercto.com/soft/d/11839.html

数据压缩导论(第4版)

数据压缩导论(第4版)

[美] Khalid Sayood / 贾洪峰 / 人民邮电出版社 / 2014-1 / 129.00

数据压缩已经成为信息革命的一门支撑技术,这场革命已经改变了我们的生活,而在此过程中,数据压缩也变得几乎无处不在。从MP3播放器到智能手机,再到数字电视和数字电影,数据压缩几乎成了所有信息技术的必备要素。 近年来,以大数据为标志的互联网技术高歌猛进。数据规模大、产生速度快、来源多样等特性,导致数据存储和处理都前所未有地复杂。《数据压缩导论(第4版)》作为迄今为止数据压缩领域最全面而深入的著作,......一起来看看 《数据压缩导论(第4版)》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

SHA 加密
SHA 加密

SHA 加密工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具