机器学习系统 TensorFlow

码农软件 · 软件分类 · 机器学习/深度学习 · 2019-08-07 08:27:02

软件介绍

TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍。

TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlow。任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分 化(auto-differentiation)。通过灵活的Python接口,要在TensorFlow中表达想法也会很容易。

TensorFlow 对于实际的产品也是很有意义的。将思路从桌面GPU训练无缝搬迁到手机中运行。

示例代码:

import tensorflow as tf
import numpy as np

# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# Before starting, initialize the variables.  We will 'run' this first.
init = tf.global_variables_initializer()

# Launch the graph.
sess = tf.Session()
sess.run(init)

# Fit the line.
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(W), sess.run(b))

# Learns best fit is W: [0.1], b: [0.3]

本文地址:https://codercto.com/soft/d/11822.html

小白学运营

小白学运营

刘异、伍斌、赵强 / 电子工业出版社 / 2015-9-1 / 49.00元

《小白学运营》是针对网络游戏行业,产品运营及数据分析工作的入门读物,主要为了帮助刚入行或有意从事游戏产品运营和数据分析的朋友。 《小白学运营》没有烦琐的理论阐述,更接地气。基础运营部分可以理解为入门新人的to do list;用户营销部分则是对用户管理的概述,从用户需求及体验出发,说明产品运营与用户管理的依附关系;数据分析实战中,侧重业务分析,着重阐述的是分析框架,以虚拟案例的方式进行陈述,......一起来看看 《小白学运营》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具