主题模型 Python 工具包 Gensim

码农软件 · 软件分类 · 机器学习/深度学习 · 2019-08-06 23:43:20

软件介绍

Gensim是一个相当专业的主题模型Python工具包。在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性。评论和商品描述的相似度越高,说明评论的用语比较官方,不带太多感情色彩,比较注重描述商品的属性和特性,角度更客观。gensim就是  Python 里面计算文本相似度的程序包。

示例代码:

针对商品评论和商品描述之间的相似度,怎么使用gensim来计算?

原理

1、文本相似度计算的需求始于搜索引擎。

搜索引擎需要计算“用户查询”和爬下来的众多”网页“之间的相似度,从而把最相似的排在最前返回给用户。

2、主要使用的算法是tf-idf

tf:term frequency词频

idf:inverse document frequency倒文档频率

主要思想是:如果某个词或短语在一篇文章中出现的频率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

  • 第一步:把每个网页文本分词,成为词包(bag of words)

  • 第三步:统计网页(文档)总数M。

  • 第三步:统计第一个网页词数N,计算第一个网页第一个词在该网页中出现的次数n,再找出该词在所有文档中出现的次数m。则该词的tf-idf 为:n/N * 1/(m/M) (还有其它的归一化公式,这里是最基本最直观的公式)

  • 第四步:重复第三步,计算出一个网页所有词的tf-idf 值。

  • 第五步:重复第四步,计算出所有网页每个词的tf-idf 值。

3、处理用户查询

  • 第一步:对用户查询进行分词。

  • 第二步:根据网页库(文档)的数据,计算用户查询中每个词的tf-idf 值。

4、相似度的计算

使用余弦相似度来计算用户查询和每个网页之间的夹角。夹角越小,越相似。

本文地址:https://codercto.com/soft/d/11811.html

算法设计与分析

算法设计与分析

郑宗汉//郑晓明 / 清华大学 / 2011-7 / 45.00元

《算法设计与分析(第2版)》系统地介绍算法设计与分析的概念和方法,共4部分内容。第1部分介绍算法设计与分析的基本概念,结合穷举法、排序问题及其他一些算法,对算法的时间复杂性的概念及复杂性的分析方法作了较为详细的叙述;第2部分以算法设计技术为纲,从合并排序、堆排序、离散集合的union和find操作开始,进而介绍递归技术、分治法、贪婪法、动态规划、回溯法、分支与限界法和随机算法等算法设计技术及其复杂......一起来看看 《算法设计与分析》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具