- 授权协议: LGPL-2.1
- 开发语言: Python
- 操作系统: 跨平台
- 软件首页: http://radimrehurek.com/gensim/
- 软件文档: https://github.com/RaRe-Technologies/gensim
软件介绍
Gensim是一个相当专业的主题模型Python工具包。在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性。评论和商品描述的相似度越高,说明评论的用语比较官方,不带太多感情色彩,比较注重描述商品的属性和特性,角度更客观。gensim就是 Python 里面计算文本相似度的程序包。
示例代码:
针对商品评论和商品描述之间的相似度,怎么使用gensim来计算?
原理
1、文本相似度计算的需求始于搜索引擎。
搜索引擎需要计算“用户查询”和爬下来的众多”网页“之间的相似度,从而把最相似的排在最前返回给用户。
2、主要使用的算法是tf-idf
tf:term frequency词频
idf:inverse document frequency倒文档频率
主要思想是:如果某个词或短语在一篇文章中出现的频率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。
第一步:把每个网页文本分词,成为词包(bag of words)。
第三步:统计网页(文档)总数M。
第三步:统计第一个网页词数N,计算第一个网页第一个词在该网页中出现的次数n,再找出该词在所有文档中出现的次数m。则该词的tf-idf 为:n/N * 1/(m/M) (还有其它的归一化公式,这里是最基本最直观的公式)
第四步:重复第三步,计算出一个网页所有词的tf-idf 值。
第五步:重复第四步,计算出所有网页每个词的tf-idf 值。
3、处理用户查询
第一步:对用户查询进行分词。
第二步:根据网页库(文档)的数据,计算用户查询中每个词的tf-idf 值。
4、相似度的计算
使用余弦相似度来计算用户查询和每个网页之间的夹角。夹角越小,越相似。
Scratch少儿趣味编程
[ 日] 阿部和广 / 陶 旭 / 人民邮电出版社 / 2014-11 / 59.00元
Scratch 是麻省理工学院设计开发的一款编程工具,是适合少儿学习编程和交流的工具和平台,有中文版且完全免费。本书结合孩子们学习的语文、数学、科学、社会、音乐、体育等科目,手把手地教大家如何用Scratch 设计程序(如设计一个自动写作文的程序),配合各式卡通形象,通俗易懂,寓教于乐。麻省理工学院教授米切尔•瑞斯尼克作序推荐。 本书图文并茂,生动风趣,适合中小学生等初学者自学或在家长的帮助......一起来看看 《Scratch少儿趣味编程》 这本书的介绍吧!
RGB转16进制工具
RGB HEX 互转工具
RGB HSV 转换
RGB HSV 互转工具
