- 授权协议: Apache
- 开发语言: Java
- 操作系统: 跨平台
- 软件首页: https://github.com/ICT-BDA/EasyML
- 软件文档: https://github.com/ICT-BDA/EasyML/blob/master/README.md
- 官方下载: https://github.com/ICT-BDA/EasyML
软件介绍
EasyML(Easy Machine Learning)是一个简单机器学习系统。
在该系统中,一个学习任务被构造为一个有向非循环图(DAG/directed acyclic graph),每个节点表征一步操作(即机器学习算法),每一条边表征从一个节点到后一个即节点的数据流。
任务可被人工定义,或根据现有任务/模板进行克隆。在把任务提交到云端之后,每个节点将根据 DAG 自动执行。图形用户界面被实现,从而可使用户以拖拉的方式创建、配置、提交和监督一项任务。
系统包含三个主要组件:
不仅能实现流行的机器学习算法,也能实现数据预处理/后处理、数据格式转变、特征生成、表现评估等算法。这些算法主要是基于 Spark 实现的。
能让用户以拖放的方式创造、安装、提交、监控、共享他们的机器学习流程。机器学习库中所有的算法都可在此开发环境系统中获得并安装,它们是构建机器学习任务的主要基础。
该服务基于开源的 Hadoop 和 Spark 大数据平台建立,在 Docker 上组织了服务器集群。从 GUI 上接受一个 DAG 任务之后,在所有的独立数据源准备好时,每个节点将会自动安排运行。对应节点的算法将会依据实现在 Linux、Spark 或者 Map-Reduce\cite 上自动安排运行。
算法笔记上机训练实战指南
胡凡、曾磊 / 机械工业出版社 / 2016-7 / 57
《算法笔记上机训练实战指南》是《算法笔记》的配套习题集,内容按照《算法笔记》的章节顺序进行编排,其中整理归类了PAT甲级、乙级共150多道题的详细题解,大部分题解均编有题意、样例解释、思路、注意点、参考代码,且代码中包含了详细的注释。读者可以通过本书对《算法笔记》的知识点进行更深入的学习和理解。书中印有大量二维码,用以实时更新或补充书籍的内容及发布本书的勘误。 《算法笔记上机训练实战指南》可......一起来看看 《算法笔记上机训练实战指南》 这本书的介绍吧!
