深度学习系统 CapsNet

码农软件 · 软件分类 · 机器学习/深度学习 · 2019-08-05 20:42:38

软件介绍

酝酿许久,深度学习之父Geoffrey Hinton终于发表了备受瞩目的Capsule Networks(CapsNet)。 Hinton本次挟CapsNet而来,大有要用它取代CNN的气势。那么,CapsNet相比CNN到底有哪些优势?它又是否能为AI界带来革命性转折呢?

首先,这位被誉为深度学习之父Geoffrey Hinto究竟是何许人也呢?在上世界50年代,深度神经网络的概念就已出现,从理论上来讲可以解决众多问题,但是一直以来却没有人知道该如何训练它,渐渐的也就被放弃。直至1986年,Hinton想到了通过反向传播来训练深度网络,标志了深度学习发展的一大转机。然而,受限于当时的计算机运算能力,直到2012年,Hinton的发明才得以一显神通。这一突破也为近年来人工智能的发展奠定了基础。

Capsule Networks在以下数据集上也获得了更高的识别准确度。这个数据集经过了精心设计,是一个纯粹的形状识别任务,即从不同的角度来看也能识别物体。CapsNet在该数据集上打败了最先进的CNN,将错误数量减少了45%。

要想使用胶囊网络,首先你得训练它——于是,我根据Hinton 的论文建立了一个Repo(非常感谢naturomics).

以下指南将为你提供在MNIST数据集上训练的模型。(MNIST是手写数字的数据集,很适合用作测试机器学习算法的基准线)

1. 复制Repo:

git clone https://github.com/bourdakos1/capsule-networks.git

2. 安装 requirements文件:

pip install -r requirements.txt

3. 开始训练!

python main.py

MNIST数据集包含6万个训练图像。默认情况下,该模型每次批处理的大小是128个,训练50次。每一次训练都是数据集的一次完整运行过程。由于每次批量大小是128,所以每次训练大约有468个批处理(60,000 / 128 ≈468)。

本文地址:https://codercto.com/soft/d/11727.html

规划算法

规划算法

拉瓦利 / 2011-1 / 99.00元

《规划算法》内容简介:规划是人类智慧的结晶,规划问题广泛地存在于人们的日常工作和生活中。现在,规划已涉及计算机科学、人工智能、力学、机械学、控制论、对策论、概率论、图论、拓扑学、微分几何、代数几何等许多现代科学领域。《规划算法》是作者多年来教学和科研工作的总结,系统地介绍了规划领域中的基础知识和最新成果。作者将三个相对独立的学科:机器人学、人工智能和控制论巧妙地结合在一起。《规划算法》给出了大量内......一起来看看 《规划算法》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

html转js在线工具
html转js在线工具

html转js在线工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具