- 授权协议: Apache
- 开发语言: C/C++
- 操作系统: 跨平台
- 软件首页: https://facebookresearch.github.io/TensorComprehensions/
- 软件文档: https://github.com/facebookresearch/TensorComprehensions/
- 官方下载: https://github.com/facebookresearch/TensorComprehensions/
软件介绍
Tensor Comprehensions 是 Facebook AI 研究院开源的 C++ 库及数学语言,功能齐全,能有效填补研究人员于数学运算领域的沟通鸿沟,并基于各种硬件后端上大规模运行工程模型。
Tensor Comprehensions 采用了 Just-In-Time 的编译自动生成机器学习社区所需的高性能代码,并被设计为高度可移植的。通过 Tensor Comprehensions,研究人员能够以数学符号的方式进行编写,系统能够根据需求进行编译调整,并输出专业的代码。
示例:
#include <ATen/ATen.h>
#include "tc/aten/aten_compiler.h"
#include "tc/core/mapping_options.h"
// 1. Define and setup the TC compilation unit with CUDA memory management backed by ATen.
std::string tc = R"TC(
def TensorDot(float(N, C1, C2, H, W) I0, float(N, C2, C3, H, W) I1) -> (O) {
O(n, c1, c3, h, w) +=! I0(n, c1, c2, h, w) * I1(n, c2, c3, h, w)
})TC";
// 2. Allocate tensors with random data
at::Tensor I0 = at::CUDA(at::kFloat).rand({32, 512, 8, 28, 28});
at::Tensor I1 = at::CUDA(at::kFloat).rand({32, 8, 2, 28, 28});
std::vector<at::Tensor> outputs;
// 3. Run autotuning with evolutionary search starting from a naive option
auto options = tc::MappingOptions::makeNaiveMappingOptions();
auto bestOption = autotune(cacheFilename, tc, "TensorDot", {I0, I1}, options, {options});
// 4. Compile and run the TC with the best option.
tc::ATenCompilationUnit atCompl;
atCompl.define(tc);
auto handle = atCompl.compile("TensorDot", {I0, I1}, bestOption);
atCompl.run("TensorDot", {I0, I1}, outputs, handle);
// 5. Perform precision checks against an ATen reference implementation
check({I0, I1}, outputs, [&I0, &I1](){ return ...; });
Web Data Mining
Bing Liu / Springer / 2006-12-28 / USD 59.95
Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is n......一起来看看 《Web Data Mining》 这本书的介绍吧!
