- 授权协议: UPL
- 开发语言: C/C++
- 操作系统: 跨平台
- 软件首页: https://oracle.github.io/graphpipe/#/
- 软件文档: https://oracle.github.io/graphpipe/#/guide/user-guide/overview
- 官方下载: https://github.com/oracle/graphpipe
软件介绍
GraphPipe 是甲骨文开源的通用深度学习模型部署框架。官方对 GraphPipe 的定义为,这是一种协议和软件集合,旨在简化机器学习模型部署并将其与特定于框架的模型实现分离。
甲骨文表示,这一新工具可提供跨深度学习框架的模型通用 API、开箱即用的部署方案以及强大的性能。
GraphPipe 为在网络上传递张量数据(tensor data)提供了一个标准、高性能的协议,以及提供了客户端和服务器的简单实现,因而使得从任何框架部署和查询机器学习模型变得轻而易举。GraphPipe 的高性能服务器支持 TensorFlow、PyTorch、MXNet、CNTK 和 Caffe2。
GraphPipe 包括
一组 flatbuffer 定义
根据 flatbuffer 定义一致的模型的指南
来自各种机器学习框架的模型的示例
用于通过 GraphPipe 查询模型的客户端库
GraphPipe 功能特性
基于 flatbuffers 的极简机器学习传输规范
适用于 Tensorflow,Caffe2 和 ONNX 的简单高效参考模型服务器(reference model servers)
Go,Python 和 Java 的高效客户端实现
使用这些工具,企业应该可跨多个服务器进行模型的部署,或者使用通用协议从不同的框架创建模型集合。GraphPipe 可以帮助为依赖远程运行模型的物联网应用程序部署机器学习。
MATLAB数值计算
莫勒 / 喻文健 / 机械工业出版社 / 2006-6 / 35.00元
《MATLAB数值计算》是关于数值方法、MATLAB软件和工程计算的教材,着重介绍数学软件的熟练使用及其内在的高效率算法。主要内容包括:MATLAB介绍、线性方程组、插值、方程求根、最小二乘法、数值积分、常微分方程、傅里叶分析、随机数、特征值与奇异值、偏微分方程。《MATLAB数值计算》配备大量MATLAB例子源代码及习题,其中涉及密码学、Google网页分级、大气科学和图像处理等前沿问题,可以帮......一起来看看 《MATLAB数值计算》 这本书的介绍吧!
