深度学习分布式训练库 Petastorm

码农软件 · 软件分类 · 机器学习/深度学习 · 2019-08-05 13:41:46

软件介绍

Petastorm 是由 Uber ATG(Advanced Technologies Group) 开发的开源数据访问库。这个库可以直接基于数 TB Parquet 格式的数据集进行单机或分布式训练和深度学习模型评估。Petastorm 支持基于 Python 的机器学习框架,如 Tensorflow、Pytorch 和 PySpark,也可以直接用在 Python 代码中。

Petastorm 的特性

Petastorm 提供了各种特性来支持自动驾驶算法的训练,包括行过滤、数据分片、shuffle、对字段子集的访问,以及对时间序列数据(n-gram)的支持。

典型数据集的结构包括:

  • 在自动驾驶汽车测试运行期间收集的传感器数据的多个列,包括摄像头、激光定位器和雷达。

  • 手动生成的标签,作为行的字段进行存储。

行数据按照时间顺序排序,并按照汽车的测试运行进行分组,行组大小通常在 30 到 100 范围内。

Petastorm 架构

Petastorm 的设计目标包括:

  • 通过单数据模式定义进行数据的编码和解码。

  • 为 ML 框架和纯 Python 代码提供可用的高数据加载带宽。

  • 将 Apache Spark 作为分布式集群计算框架来生成数据集。

  • 与 Python、ML 平台无关的 Petastorm 核心组件的实现。

  • 呈现给 Tensorflow 和 PyTorch 框架的原生接口。

  • etl 包实现了生成数据集的功能。

  • Reader 是训练和计算代码使用的主要数据加载引擎。Reader 使用 Python 实现,不依赖任何 ML 框架(Tensorflow、Pytorch),并且可以通过 Python 代来实例化和使用。

  • 为 Tensorflow 和 PyTorch 提供适配器。

  • Unischema 可以被数据集生成和数据加载代码引用。


Petastorm 提供了支持数据集生成和读取的组件。Unischema 定义了可供两者使用的公共数据模式。

内容摘自AI前线

本文地址:https://codercto.com/soft/d/11699.html

图解深度学习

图解深度学习

[日] 山下隆义 / 张弥 / 人民邮电出版社 / 2018-5 / 59.00元

本书从深度学习的发展历程讲起,以丰富的图例从理论和实践两个层面介绍了深度学习的各种方法,以及深度学习在图像识别等领域的应用案例。内容涉及神经网络、卷积神经网络、受限玻尔兹曼机、自编码器、泛化能力的提高等。此外,还介绍了包括Theano、Pylearn2、Caffe、DIGITS、Chainer 和TensorFlow 在内的深度学习工具的安装和使用方法。 本书图例丰富,清晰直观,适合所有对深......一起来看看 《图解深度学习》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具