强化学习构建模块库 TRFL

码农软件 · 软件分类 · 机器学习/深度学习 · 2019-08-05 11:42:05

软件介绍

TRFL(发音为“truffle”)建立在 TensorFlow 之上,它是一个强化学习构建模块库。

它是 DeepMind 内部大量用于诸如 DQN、DDPG 和 Importance Weighted Actor Learner Architecture 这些成功的代理如的关键算法组件的集合。

TRFL 库包括实现经典 RL 算法以及更尖端技术的功能,提供的损失函数和其它操作在纯 TensorFlow 中实现。它们不是完整的算法,而是实现了在构建全功能强化学习代理时需要的数学运算。

对于基于值的强化学习,TRFL 提供了 TensorFlow 操作用于在离散动作空间中学习,例如 TD-learning、Sarsa、Q-learning 及其变体,同时也提供了用于实现连续控制算法的操作,例如 DPG。此外 TRFL 还包括用于学习分配值功能的操作。

使用示例

import tensorflow as tf
import trfl

# Q-values for the previous and next timesteps, shape [batch_size, num_actions].
q_tm1 = tf.constant([[1, 1, 0], [1, 2, 0]], dtype=tf.float32)
q_t = tf.constant([[0, 1, 0], [1, 2, 0]], dtype=tf.float32)

# Action indices, pcontinue and rewards, shape [batch_size].
a_tm1 = tf.constant([0, 1], dtype=tf.int32)
pcont_t = tf.constant([0, 1], dtype=tf.float32)
r_t = tf.constant([1, 1], dtype=tf.float32)

loss, q_learning = trfl.qlearning(q_tm1, a_tm1, r_t, pcont_t, q_t)

大多数情况下,您可能只对损失感兴趣:

loss, _ = trfl.qlearning(q_tm1, a_tm1, r_t, pcont_t, q_t)

# You can also do this, which returns the identical `loss` tensor:
loss = trfl.qlearning(q_tm1, a_tm1, r_t, pcont_t, q_t).loss

reduced_loss = tf.reduce_mean(loss)

optimizer = tf.train.AdamOptimizer(learning_rate=0.1)
train_op = optimizer.minimize(reduced_loss)

该模块中的所有损失函数使用上述约定返回损失张量和额外信息。

本文地址:https://codercto.com/soft/d/11691.html

轻资产创业

轻资产创业

蔡余杰 / 广东人民出版社 / 2017-11 / 45.00元

在互联网时代,资金和资源已经不是制约创业的关键因素。如今即便没有充足的资金和资产做后盾,创业梦依旧可以成为现实。相信轻资产创业模式能够帮助众多经营管理者和创业者实现管理与创业的梦想。 轻资产创业存在误区,如何跨过? 如何巧用四大模式让自媒体创业落地? 如何用一个点子引发创意型创业? 如何利用电商平台实现流量为王的营销型创业? 如何巧用知识节点做好知识产型创业? ......一起来看看 《轻资产创业》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

随机密码生成器
随机密码生成器

多种字符组合密码

SHA 加密
SHA 加密

SHA 加密工具