- 授权协议: Apache-2.0
- 开发语言: Python
- 操作系统: 跨平台
- 软件首页: https://github.com/google/JAX
- 软件文档: https://github.com/google/JAX
- 官方下载: https://github.com/google/JAX
软件介绍
JAX 是一个 TensorFlow 的简化库,它结合了 Autograd 和 XLA,专门用于高性能机器学习研究。
凭借 Autograd,JAX 可以求导循环、分支、递归和闭包函数,并且它可以进行三阶求导。通过 grad,它支持自动模式反向求导(反向传播)和正向求导,且二者可以任何顺序任意组合。
得力于 XLA,可以在 GPU 和 TPU 上编译和运行 NumPy 程序。默认情况下,编译发生在底层,库调用实时编译和执行。但是 JAX 还允许使用单一函数 API jit 将 Python 函数及时编译为 XLA 优化的内核。编译和自动求导可以任意组合,因此可以在 Python 环境下实现复杂的算法并获得最大的性能。
import jax.numpy as np from jax import grad, jit, vmap from functools import partial def predict(params, inputs): for W, b in params: outputs = np.dot(inputs, W) + b inputs = np.tanh(outputs) return outputs def logprob_fun(params, inputs, targets): preds = predict(params, inputs) return np.sum((preds - targets)**2) grad_fun = jit(grad(logprob_fun)) # compiled gradient evaluation function perex_grads = jit(vmap(grad_fun, in_axes=(None, 0, 0))) # fast per-example grads
更深入地看,JAX 实际上是一个可扩展的可组合函数转换系统,grad 和 jit 都是这种转换的实例。
Erlang趣学指南
邓辉、孙鸣 / 人民邮电出版社 / 2016-9-7 / 79.00元
这是一本讲解Erlang编程语言的入门指南,内容通俗易懂,插图生动幽默,示例短小清晰,结构安排合理。书中从Erlang的基础知识讲起,融汇所有的基本概念和语法。内容涉及模块、函数、类型、递归、错误和异常、常用数据结构、并行编程、多处理、OTP、事件处理,以及所有Erlang的重要特性和强大功能。一起来看看 《Erlang趣学指南》 这本书的介绍吧!
