影像监控行业迎来变革,人工智能与深度学习技术是关键

栏目: 编程工具 · 发布时间: 5年前

内容简介:本文转载自“智安物联网”,作者潘一大。原标题《人工智能深度学习技术,深刻改变影像监控产业》。亿欧智慧城市对文章进行二次编辑,供读者参考。人工智能发展方兴未艾,但随着影像数据不断增加,也已成为安全监控的关键。本文将重点分析,深度学习科技如何在影像监控领域脱颖而出。

影像监控行业迎来变革,人工智能与深度学习技术是关键

本文转载自“智安物联网”,作者潘一大。原标题《人工智能深度学习技术,深刻改变影像监控产业》。亿欧智慧城市对文章进行二次编辑,供读者参考。

人工智能发展方兴未艾,但随着影像数据不断增加,也已成为安全监控的关键。本文将重点分析,深度学习科技如何在影像监控领域脱颖而出。

人工智能为一项使机器能够从过去经验中学习的技术,又称为机器学习或认知运算,透过模仿人类大脑所组成的多层类神经网路辨别物件及其模式,并在无人类干预的情况下自行做出决策。

随着影像数据不断增加,人工智能和深度学习(Deep Learning,机器学习分支)技术已成为安全监控的关键,能够有效降低人为错误和误报,并大幅减少影像搜寻时间,对众多产业造成极大的影响。

「深度学习」在影像监控领域脱颖而出

以深度学习为基础的演算法,大幅胜过传统电脑视觉演算法,其主要原因为深度学习系统能够持续24小时、每天不断训练及提升其数据量。许多应用结果皆显示,深度学习系统在某些领域上可达到近99.9%的准确度,而电脑演算法要超过95%的准确度是非常困难的。

另外,深度学习系统展现卓越的能力,能够侦测未知或非预期中的事件(异常事件),此特性能显着地减少在安全影像分析系统中所产生的错误侦测。事实上,无法降低错误侦测率为影像监控产业的主要问题,因此目前各大产业皆对于智慧影像分析解决方案有强烈的需求。

虽然深度学习已应用于众多产业且得到突破性的成果,但并非所有应用都合适,然而在影像监控领域的应用则明显脱颖而出。

人工智能深度学习4大技术优势

人工智能深度学习技术应用于影像监控领域,可彰显下列4大优势:

1、降低误报率:人工智能侦测能够轻易辨别不同种类的人和物件,例如在此区域中设定侦测人,则当动物及车辆经过,或者树木产生的阴影,皆不会造成误报,可减少90%的误报率。换句话说,在没有人工智慧的情况下,动物、树、阴影、天气状况都将触动感应装置并误发出警报。

2、容易设置及维护:没有人工智能的传统影像监控必须考虑地形、摄影机视角、感应器位置…等,一旦要在设定上作任何变动,都需要手动重新计算这些因素,并可能会影响其他原有的设定。

相较之下,使用人工智慧侦测功能,可让系统管理者透过单一控制界面,调整系统设定及摄影机,亦能随时在几分鐘内调整特定区域内欲侦测的目标物件。

3、容易与第三方技术整合:人工智慧的本质就是学习,并且能够自行调整成适合在各种条件下的运行状态,因此人工智慧可以轻易且即时地与第三方技术进行多层组合。

例如,一旦在特定区域中侦测到目标物件,便会发出警报、自动开锁管制进出、或连动其他附加装置等,而这些设定皆只须从鼠标按下按钮便能完成。人工智慧影像监控系统亦能够轻易地与现有的录影装置及储存系统(NVR)进行整合。

4、性能稳定持久:没有使用人工智慧的影像监控系统需要结合多项组件,以及复杂的设置才能提高侦测准确度,然而越多组件代表发生故障的机率越高,包括暴露在外的感应器若受到损害,便会造成错误或延误侦测。

另一方面,以人力进行监控管制,也无法确保能得到稳定且正确的资讯。研究显示,一个人的专注力最多只能维持20分钟,而当人们同时面对多个物件,如监视多个摄影机监控萤幕,注意力更会快速下降。人工智慧技术可完全消除这些疑虑,此外使用人工智慧相对减少所需组件,有效降低系统故障的风险。

应用于监控影像分析4大亮点

基于人工智能深度学习技术的监控影像分析解决方案,亦可突显以下4大亮点:

1、区别人类、动物及雕像:人工智慧系统持续分析监控摄影机所捕捉的影像串流,能够区分人类的脸孔与非人类物件(如动物、雕像)的脸,并如人类的大脑,人工智慧会将这些讯息储存在记忆中。

2、人脸快搜:利用人工智能能够即时侦测图片中的人脸及特征,使用者不需在系统中建立人脸资料库,只需上传目标物件的人脸照片到系统,人工智慧便能从记忆中搜寻相似的人脸。

分析此目标人物在何时、何地出现过,并能够利用时间及摄影机位置与地图连接,获得此人物的行径并推测可能进行的路线。此外,使用者可以决定想要搜寻的日期与时间区间,亦可指定特定摄影机做搜寻,并能够调整相似度,决定所搜寻的人脸与上传的照片匹配程度高低。

3、人脸辨识:深度学习技术应用在人脸辨识上,能有效改善其准确度。美国国家标准技术研究所(NIST)在过去10年中进行人脸辨识供应商测试(FRVT),根据NIST的报告显示,在过去20年人脸辨识的错误率已大幅改善。

现今大多数拥有高性能及高准确度的人脸辨识产品,都是基于深度学习技术。而根据Facebook和特拉维夫大学的研究,人脸辨识用于特定环境(例如辨识机场移民),其准确率已达到99.9%。

4、入侵侦测:人工智能可使入侵侦测功能达到最高准确度及最低误报率。使用人工智慧,系统管理员可根据所需,配置具有不同条件及目标侦测物件的限制区域,包括特定颜色侦测或特征侦测。

例如,未穿着所需制服或携带食物/饮料的人、超过5人在此区域游荡、在特定时间有目标物件入侵、异常行为或逆向行进等,皆能准确侦测并发出警报。

结语:由于人工智能深度学习技术具备上述优势及亮点,全球安全监控业者也已纷纷投入相关设备及应用开发。

本文已标注来源和出处,版权归原作者所有,如有侵权,请联系我们。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数据库系统概念

数据库系统概念

Abraham Silberschatz、Henry F. Korth、S. Sudarshan / 杨冬青、马秀莉、唐世渭 / 机械工业 / 2006-10-01 / 69.50元

本书是数据库系统方面的经典教材之一。国际上许多著名大学包括斯坦福大学、耶鲁大学、得克萨斯大学、康奈尔大学、伊利诺伊大学、印度理工学院等都采用本书作为教科书。我国也有许多所大学采用本书以前版本的中文版作为本科生和研究生的数据库课程的教材和主要教学参考书,收到了良好的效果。 本书调整和新增内容:调整了第4版的讲授顺序。首先介绍SQL及其高级特性,使学生容易接受数据库设计的概念。新增数据库设计的专......一起来看看 《数据库系统概念》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具