内容简介:Analyze,分析表(也称为计算统计信息)是一种内置的Hive操作,可以执行该操作来收集表上的元数据信息。这可以极大的改善表上的查询时间,因为它收集构成表中数据的行计数,文件计数和文件大小(字节),并在执行之前将其提供给查询计划程序。这是一个基础分析语句,不限制是否存在表分区,如果你是分区表更应该定期执行。这是一个细粒度的分析语句。它收集指定的分区上的元数据,并将该信息存储在Hive Metastore中已进行查询优化。该信息包括每列,不同值的数量,NULL值的数量,列的平均大小,平均值或列中所有值的总和
0.简介
Analyze,分析表(也称为计算统计信息)是一种内置的Hive操作,可以执行该操作来收集表上的元数据信息。这可以极大的改善表上的查询时间,因为它收集构成表中数据的行计数,文件计数和文件大小(字节),并在执行之前将其提供给查询计划程序。
1.如何分析表?
- 基础分析语句
ANALYZE TABLE my_database_name.my_table_name COMPUTE STATISTICS;
这是一个基础分析语句,不限制是否存在表分区,如果你是分区表更应该定期执行。
- 分析特定分区
ANALYZE TABLE my_database_name.my_table_name PARTITION (YEAR=2019, MONTH=5, DAY=12) COMPUTE STATISTICS;
这是一个细粒度的分析语句。它收集指定的分区上的元数据,并将该信息存储在Hive Metastore中已进行查询优化。该信息包括每列,不同值的数量,NULL值的数量,列的平均大小,平均值或列中所有值的总和(如果类型为数字)和值的百分数。
- 分析列
ANALYZE TABLE my_database_name.my_table_name COMPUTE STATISTICS FOR column1, column2, column3;
它收集指定列上的元数据,并将该信息存储在Hive Metastore中以进行查询优化。该信息包括每列,不同值的数量,NULL值的数量,列的平均大小,平均值或列中所有值的总和(如果类型为数字)和值的百分数。
- 分析指定分区上的列
ANALYZE TABLE my_database_name.my_table_name PARTITION (YEAR=2019, MONTH=5, DAY=12, HOUR=0) COMPUTE STATISTICS for column1, column2, column3; ANALYZE TABLE my_database_name.my_table_name PARTITION (YEAR=2019, MONTH=5, DAY=12, HOUR) COMPUTE STATISTICS for column1, column2, column3; ANALYZE TABLE my_database_name.my_table_name PARTITION (YEAR=2019, MONTH=5, DAY=12, HOUR) COMPUTE STATISTICS FOR COLUMNS;
第一个 SQL 只会分析单小时分区上的列信息; 第二个SQL会分析单天分区上的列信息; 第三个SQL会分析单天分区上的所有列信息。
2.效果验证
测试案例1
- 数据准备 选取KS3线上数据集、TPC-DS基准测试数据集作为样本。结合Hive表分析操作,对多个文件格式以及压缩算法下的数据查询时间进行比对。
SELECT count(DISTINCT(uuid)) AS script_appentry_30day_uv FROM test_hive.document_assistant WHERE dt >= '2019-03-12' AND dt <= '2019-04-10' AND p3 = '14' AND p5 = 'script_appentry'
- 测试结果
测试案例2
- 数据准备(TPC-DS基础测试)
- 美国事务处理效能委员会(TPC,Transaction Processing Performance Council) :是目前最知名的非赢利的数据管理系统评测基准标准化组织。它定义了多组标准测试集用于客观地、可重现地评测数据库的性能。
- TPC-DS测试基准是TPC组织推出的用于替代TPC-H的下一代决策支持系统测试基准:TPC-DS采用星型、雪花型等多维数据模式。它包含7张事实表,17张维度表,平均每张表有18列。
- TPC-DS 特点:
- 共99个测试案例,遵循SQL’99和SQL 2003的语法标准,SQL案例比较复杂;
- 分析的数据量大,并且测试案例是在回答真实的商业问题;
- 测试案例中包含各种业务模型(如分析报告型,迭代式的联机分析型,数据挖掘型等);
- 几乎所有的测试案例都有很高的IO负载和CPU计算需求。
场景:单事实表、多个维表,复杂的Join Store_Sales表记录数:2,879,987,999 事实表存储大小(GB):Text:390, Parquet(Gzip):116, Orc(Zlib):131
query27.sql:
-- start query 1 in stream 0 using template query27.tpl and seed 2017787633 select i_item_id, s_state, grouping(s_state) g_state, avg(ss_quantity) agg1, avg(ss_list_price) agg2, avg(ss_coupon_amt) agg3, avg(ss_sales_price) agg4 from store_sales, customer_demographics, date_dim, store, item where ss_sold_date_sk = d_date_sk and ss_item_sk = i_item_sk and ss_store_sk = s_store_sk and ss_cdemo_sk = cd_demo_sk and cd_gender = 'M' and cd_marital_status = 'U' and cd_education_status = '2 yr Degree' and d_year = 2001 and s_state in ('SD','FL', 'MI', 'LA', 'MO', 'SC') group by rollup (i_item_id, s_state) order by i_item_id ,s_state limit 100; -- end query 1 in stream 0 using template query27.tpl
query28.sql:
-- start query 1 in stream 0 using template query28.tpl and seed 444293455 select * from (select avg(ss_list_price) B1_LP ,count(ss_list_price) B1_CNT ,count(distinct ss_list_price) B1_CNTD from store_sales where ss_quantity between 0 and 5 and (ss_list_price between 11 and 11+10 or ss_coupon_amt between 460 and 460+1000 or ss_wholesale_cost between 14 and 14+20)) B1, (select avg(ss_list_price) B2_LP ,count(ss_list_price) B2_CNT ,count(distinct ss_list_price) B2_CNTD from store_sales where ss_quantity between 6 and 10 and (ss_list_price between 91 and 91+10 or ss_coupon_amt between 1430 and 1430+1000 or ss_wholesale_cost between 32 and 32+20)) B2, (select avg(ss_list_price) B3_LP ,count(ss_list_price) B3_CNT ,count(distinct ss_list_price) B3_CNTD from store_sales where ss_quantity between 11 and 15 and (ss_list_price between 66 and 66+10 or ss_coupon_amt between 920 and 920+1000 or ss_wholesale_cost between 4 and 4+20)) B3, (select avg(ss_list_price) B4_LP ,count(ss_list_price) B4_CNT ,count(distinct ss_list_price) B4_CNTD from store_sales where ss_quantity between 16 and 20 and (ss_list_price between 142 and 142+10 or ss_coupon_amt between 3054 and 3054+1000 or ss_wholesale_cost between 80 and 80+20)) B4, (select avg(ss_list_price) B5_LP ,count(ss_list_price) B5_CNT ,count(distinct ss_list_price) B5_CNTD from store_sales where ss_quantity between 21 and 25 and (ss_list_price between 135 and 135+10 or ss_coupon_amt between 14180 and 14180+1000 or ss_wholesale_cost between 38 and 38+20)) B5, (select avg(ss_list_price) B6_LP ,count(ss_list_price) B6_CNT ,count(distinct ss_list_price) B6_CNTD from store_sales where ss_quantity between 26 and 30 and (ss_list_price between 28 and 28+10 or ss_coupon_amt between 2513 and 2513+1000 or ss_wholesale_cost between 42 and 42+20)) B6 limit 100; -- end query 1 in stream 0 using template query28.tpl
query43.sql:
-- start query 1 in stream 0 using template query43.tpl and seed 1819994127 select s_store_name, s_store_id, sum(case when (d_day_name='Sunday') then ss_sales_price else null end) sun_sales, sum(case when (d_day_name='Monday') then ss_sales_price else null end) mon_sales, sum(case when (d_day_name='Tuesday') then ss_sales_price else null end) tue_sales, sum(case when (d_day_name='Wednesday') then ss_sales_price else null end) wed_sales, sum(case when (d_day_name='Thursday') then ss_sales_price else null end) thu_sales, sum(case when (d_day_name='Friday') then ss_sales_price else null end) fri_sales, sum(case when (d_day_name='Saturday') then ss_sales_price else null end) sat_sales from date_dim, store_sales, store where d_date_sk = ss_sold_date_sk and s_store_sk = ss_store_sk and s_gmt_offset = -6 and d_year = 1998 group by s_store_name, s_store_id order by s_store_name, s_store_id,sun_sales,mon_sales,tue_sales,wed_sales,thu_sales,fri_sales,sat_sales limit 100; -- end query 1 in stream 0 using template query43.tpl
query67.sql:
-- start query 1 in stream 0 using template query67.tpl and seed 1819994127 select * from (select i_category ,i_class ,i_brand ,i_product_name ,d_year ,d_qoy ,d_moy ,s_store_id ,sumsales ,rank() over (partition by i_category order by sumsales desc) rk from (select i_category ,i_class ,i_brand ,i_product_name ,d_year ,d_qoy ,d_moy ,s_store_id ,sum(coalesce(ss_sales_price*ss_quantity,0)) sumsales from store_sales ,date_dim ,store ,item where ss_sold_date_sk=d_date_sk and ss_item_sk=i_item_sk and ss_store_sk = s_store_sk and d_month_seq between 1212 and 1212+11 group by rollup(i_category, i_class, i_brand, i_product_name, d_year, d_qoy, d_moy,s_store_id))dw1) dw2 where rk <= 100 order by i_category ,i_class ,i_brand ,i_product_name ,d_year ,d_qoy ,d_moy ,s_store_id ,sumsales ,rk limit 100; -- end query 1 in stream 0 using template query67.tpl
query46.sql:
-- start query 1 in stream 0 using template query46.tpl and seed 803547492 select c_last_name ,c_first_name ,ca_city ,bought_city ,ss_ticket_number ,amt,profit from (select ss_ticket_number ,ss_customer_sk ,ca_city bought_city ,sum(ss_coupon_amt) amt ,sum(ss_net_profit) profit from store_sales,date_dim,store,household_demographics,customer_address where store_sales.ss_sold_date_sk = date_dim.d_date_sk and store_sales.ss_store_sk = store.s_store_sk and store_sales.ss_hdemo_sk = household_demographics.hd_demo_sk and store_sales.ss_addr_sk = customer_address.ca_address_sk and (household_demographics.hd_dep_count = 2 or household_demographics.hd_vehicle_count= 1) and date_dim.d_dow in (6,0) and date_dim.d_year in (1998,1998+1,1998+2) and store.s_city in ('Cedar Grove','Wildwood','Union','Salem','Highland Park') group by ss_ticket_number,ss_customer_sk,ss_addr_sk,ca_city) dn,customer,customer_address current_addr where ss_customer_sk = c_customer_sk and customer.c_current_addr_sk = current_addr.ca_address_sk and current_addr.ca_city <> bought_city order by c_last_name ,c_first_name ,ca_city ,bought_city ,ss_ticket_number limit 100; -- end query 1 in stream 0 using template query46.tpl
query7.sql:
-- start query 1 in stream 0 using template query7.tpl and seed 1930872976 select i_item_id, avg(ss_quantity) agg1, avg(ss_list_price) agg2, avg(ss_coupon_amt) agg3, avg(ss_sales_price) agg4 from store_sales, customer_demographics, date_dim, item, promotion where ss_sold_date_sk = d_date_sk and ss_item_sk = i_item_sk and ss_cdemo_sk = cd_demo_sk and ss_promo_sk = p_promo_sk and cd_gender = 'F' and cd_marital_status = 'W' and cd_education_status = 'Primary' and (p_channel_email = 'N' or p_channel_event = 'N') and d_year = 1998 group by i_item_id order by i_item_id limit 100; -- end query 1 in stream 0 using template query7.tpl
query73.sql:
-- start query 1 in stream 0 using template query73.tpl and seed 1971067816 select c_last_name ,c_first_name ,c_salutation ,c_preferred_cust_flag ,ss_ticket_number ,cnt from (select ss_ticket_number ,ss_customer_sk ,count(*) cnt from store_sales,date_dim,store,household_demographics where store_sales.ss_sold_date_sk = date_dim.d_date_sk and store_sales.ss_store_sk = store.s_store_sk and store_sales.ss_hdemo_sk = household_demographics.hd_demo_sk and date_dim.d_dom between 1 and 2 and (household_demographics.hd_buy_potential = '>10000' or household_demographics.hd_buy_potential = 'unknown') and household_demographics.hd_vehicle_count > 0 and case when household_demographics.hd_vehicle_count > 0 then household_demographics.hd_dep_count/ household_demographics.hd_vehicle_count else null end > 1 and date_dim.d_year in (2000,2000+1,2000+2) and store.s_county in ('Mobile County','Maverick County','Huron County','Kittitas County') group by ss_ticket_number,ss_customer_sk) dj,customer where ss_customer_sk = c_customer_sk and cnt between 1 and 5 order by cnt desc; -- end query 1 in stream 0 using template query73.tpl
- 测试结果
3.结论
- Hive执行表分析后能大幅加速查询速度
- 查询耗时(压缩算法):None > Snappy > Gzip/Zlib
- 查询耗时(文件格式):Text > Parquet > Orc
- 当前测试场景下,ORC格式查询耗时最低
- Parquet与Orc查询耗时接近
一个正在技术专家成长道路上不断努力前进的程序员
(转载本站文章请注明作者和出处buildupchao)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。