TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变

栏目: 数据库 · 发布时间: 5年前

内容简介:去年TensorFlow官方推出了模型优化工具,最多能将模型尺寸减小4倍,运行速度提高3倍。最近现又有一款新工具加入模型优化“豪华套餐”,这就是基于Keras的

晓查 编译自 Medium

量子位 报道 | 公众号 QbitAI

TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变

去年TensorFlow官方推出了模型优化工具,最多能将模型尺寸减小4倍,运行速度提高3倍。

最近现又有一款新 工具 加入模型优化“豪华套餐”,这就是基于Keras的 剪枝优化 工具。

训练AI模型有时需要大量硬件资源,但不是每个人都有4个GPU的豪华配置,剪枝优化可以帮你缩小模型尺寸,以较小的代价进行推理。

什么是权重剪枝?

权重剪枝(Weight Pruning)优化,就是消除权重张量中不必要的值,减少神经网络层之间的连接数量,减少计算中涉及的参数,从而降低操作次数。

TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变

这样做的好处是压缩了网络的存储空间,尤其是稀疏张量特别适合压缩。例如,经过处理可以将MNIST的90%稀疏度模型从12MB压缩到2MB。

此外,权重剪枝与量化(quantization)兼容,从而产生复合效益。通过训练后量化(post-training quantization),还能将剪枝后的模型从2MB进一步压缩到仅0.5MB 。

TensorFlow官方承诺,将来TensorFlow Lite会增加对稀疏表示和计算的支持,从而扩展运行内存的压缩优势,并释放性能提升。

优化效果

权重剪枝优化可以用于不同任务、不同类型的模型,从图像处理的CNN用于语音处理的RNN。下表显示了其中一些实验结果。

TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变

以GNMT从德语翻译到英语的模型为例,原模型的BLEU为29.47。指定80%的稀疏度,经优化后,张量中的非零参数可以从211M压缩到44M,准确度基本没有损失。

使用方法

现在的权重剪枝API建立在Keras之上,因此开发者可以非常方便地将此技术应用于任何现有的Keras训练模型中。

开发者可以指定最终目标稀疏度(比如50%),以及执行剪枝的计划(比如2000步开始剪枝,在4000步时停止,并且每100步进行一次),以及剪枝结构的可选配置。

import tensorflow_model_optimization as tfmot

model = build_your_model()

pruning_schedule = tfmot.sparsity.keras.PolynomialDecay(
initial_sparsity=0.0, final_sparsity=0.5,
begin_step=2000, end_step=4000)

model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(model, pruning_schedule=pruning_schedule)



model_for_pruning.fit(…)

TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变

三个不同张量,左边的没有稀疏度,中心的有多个单独0值,右边的有1x2的稀疏块。

随着训练的进行,剪枝过程开始被执行。在这个过程中,它会消除消除张量中最接近零的权重,直到达到当前稀疏度目标。

每次计划执行剪枝程序时,都会重新计算当前稀疏度目标,根据平滑上升函数逐渐增加稀疏度来达到最终目标稀疏度,从0%开始直到结束。

TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变

用户也可以根据需要调整这个上升函数。在某些情况下,可以安排训练过程在某个步骤达到一定收敛级别之后才开始优化,或者在训练总步数之前结束剪枝,以便在达到最终目标稀疏度时进一步微调系统。

TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变

权重张量剪枝动画,黑色的点表示非零权重,随着训练的进行,稀疏度逐渐增加

GitHub地址:

https://github.com/tensorflow/model-optimization

官方教程:

https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras

— 完 —

订阅AI内参,获取AI行业资讯

TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变

加入社群

量子位AI社群开始招募啦,量子位社群分:AI讨论群、AI+行业群、AI技术群;

欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“微信群”,获取入群方式。 (技术群与AI+行业群需经过审核,审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变

量子位  QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「好看」吧 !


以上所述就是小编给大家介绍的《TensorFlow官方发布剪枝优化工具:参数减少80%,精度几乎不变》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

编程卓越之道

编程卓越之道

Hyde R / 韩东海 / 电子工业出版社 / 2006-4-1 / 49.80

各位程序员一定希望自己编写的代码是能让老板赞赏、满意的代码;是能让客户乐意掏钱购买的代码;是能让使用者顺利使用的代码;是能让同行欣赏赞誉的代码;是能让自己引以为豪的卓越代码。本书作者为希望能编写出卓越代码的人提供了自己积累的关于卓越编程的真知灼见。它弥补了计算机科学和工程课程中被忽略的一个部分——底层细节,而这正是构建卓越代码的基石。具体内容包括:计算机数据表示法,二进制数学运算与位运算,内存组织......一起来看看 《编程卓越之道》 这本书的介绍吧!

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具