CMU Database Systems - Storage

栏目: 数据库 · 发布时间: 6年前

内容简介:存储分为volatile和non-volatile,越快的越贵越小那么所以要解决的第一个问题就是,如果尽量在有限的成本下,让读写更快些意思就是,尽量读写volatile存储,但是volatile比较很有限,所以需要合理的在两种存储上去swap

Database Storage

存储分为volatile和non-volatile,越快的越贵越小

那么所以要解决的第一个问题就是,如果尽量在有限的成本下,让读写更快些

意思就是,尽量读写volatile存储,但是volatile比较很有限,所以需要合理的在两种存储上去swap

CMU Database Systems - Storage

但是技术是在飞速的进步的,所以现在有Non-volatile memory

所以最近流行内存数据库,因为当前的memory和磁盘间的IO瓶颈已经消除,所以当前的瓶颈是CPU cache和Memory之前的问题

这个问题会在下一门课里面说

CMU Database Systems - Storage

所以继续前面的问题,怎么解决disk和memory之间的IO瓶颈

一个直觉的想法就是,交给操作系统去做,使用虚拟内存,Virtual Memory

mmap可以产生内存文件,把磁盘文件的内容map到内存的地址空间,这样有个问题就是如果有多个并发写,需要同步机制,系统也提供右图这些同步指令

CMU Database Systems - Storage CMU Database Systems - Storage

但是数据库管理系统往往希望做的更精细,因为操作系统是个通用方案,一定达不到性能最优

CMU Database Systems - Storage

下面我们来看第二个问题,DBMS如何将数据库的数据放到磁盘文件上?

这里有个选择,DBMS是否要用系统的文件系统,还是拿一块raw storage自己管理,现在一般的选择是还是使用文件系统,毕竟方便

既然用文件系统,那么DBMS就需要把数据库数据存成一个或多个文件

这里有个概念,P age ,文件是由一堆page组成的

CMU Database Systems - Storage

page其实就是固定大小的数据块,那为什么要有这层抽象?

这个和我们使用的存储有关,当前用的磁盘,除了慢,还有个特点是对顺序读写比较友好,因为随机读需要磁头不断的机械移动的,这个想想也很慢

所以文件系统和磁盘间的IO,需要尽量批量读,读写数据的最小单位称为数据块,一般是4K,为什么是4K,应该是因为比较经济

而数据库的page是基于文件系统的,所以设计成4k的倍数会比较合理

数据库会自己维护一个page id到实际存储地址(文件+offset)的映射

CMU Database Systems - Storage

那么如何在磁盘文件上管理page?

有三种方式,最常见的是Heap FIle

CMU Database Systems - Storage

HeapFile就是用来放page的文件,当然我们可以通过文件名+offset,访问某个page

同时我们需要可以遍历所有的page,知道哪些page有free space可以用来存放tuples

CMU Database Systems - Storage

所以这里heap file也有两种实现方式,

CMU Database Systems - Storage CMU Database Systems - Storage

继续看看Page的构造是怎么样的?

可以看到在page中的header,存储了一些元数据,如果需要self-contained,就需要包含scheam,编码信息等

CMU Database Systems - Storage

那么data,是如何组织的了?

其实有两种方式存储数据库的数据,

Tuple-oriented和Log-structured

Tuple-oriented主要的存储方式是,slotted pages

CMU Database Systems - Storage

这个方法关键就是加入了slot array来索引各个tuple,这样就可以兼容变长的tuples,不然怎么知道每个tuple从哪里开始,删除tuple也更简单

如果是Log-structured,写数据会比较简单

CMU Database Systems - Storage

但读数据就比较麻烦了,需要replay出数据,因为你只记录了log吗

CMU Database Systems - Storage

提供读性能的方式有两种,尽量减少replay的数据,就是打snapshot或建index

比较常用的就是定期的做compaction,比如HBase, Cassandra,LevelDB,RocksDB

Compaction分为两种,按层逐级compact,或是universal

CMU Database Systems - Storage

最后,tuple本身的存储结构是怎么样的?

CMU Database Systems - Storage

同样Tuple也有一个header,里面包含元数据,比如这个tuple可见性,BitMap表示哪些是NULL

注意这里一般是不会包含schema,因为在每个tuple都包含没有必要,一个table的schema是固定的,单独存就好

Denormalized Tuple Data

这是一种针对查询的优化,

Denormalized,都知道关系模型有范式,冗余数据一定是会打破范式的,所以是de-

两个表join,把需要的字段冗余到一张表中,称为pre join,读的时候会比较快,单纯从当前page就可以完成,但是写就麻烦了,因为打破范式了吗

CMU Database Systems - Storage CMU Database Systems - Storage

总结一下上面的说的,如下图

这里page管理用的是direction的方式,所以读取page2,

首先要把direction page加载到buffer里面,这样读到page2的地址然后再去读出page2,然后Execute engine需求去解析page

CMU Database Systems - Storage

Page中就是tuple的集合,tuple是a sequence of bytes,但如果我们要使用这些数据,首先要把这些bytes转化为相应类型的数据

主要的类型如下,

CMU Database Systems - Storage

需要特别关注的,

浮点数和定点数

定点数就是小数点是固定的,所以我们用int分别存储小数点前后的数字就可以实现,定点数是可以做到精确计算的,但是局限也很明显,只能表示固定精度

CMU Database Systems - Storage

浮点数就比较复杂了,因为小数是连续的,无限的,而计算机实现是离散的,有限的

所以要在计算机里面表示浮点小数,就需要用trick的方法去近似,定义出的标准就是IEEE-754,浮点运算是近似的,非精确的

CMU Database Systems - Storage

VARCHAR,BLOB

由于tuple大小不能超过page,比如对于varchar,如果大于page,需要把多的存放到overflow page里面

而对于blob这样的类型,干脆就需要存放到外部文件中,这里注意对于存放到外部文件的数据,是不保证transaction等语义的

CMU Database Systems - Storage CMU Database Systems - Storage

那么现在有个关键的问题,数据库的元数据是存储在什么地方的?

Catalogs,Catalogs的信息可以从Information_schema表中读取到

CMU Database Systems - Storage CMU Database Systems - Storage

不同的库,对于元数据读取有不同的shortcuts,

CMU Database Systems - Storage CMU Database Systems - Storage

最后再看下,行列存的区别,

行存,row storage,称为n-ary storage model

对于左图的OLTP的需求,行存很适合,插入和更新比较简单,整行的查询

但对于右图,OLAP的需求,行存会比较慢,BI需求往往需要扫描大量的行,但只是用其中的部分字段

CMU Database Systems - Storage CMU Database Systems - Storage

列存,column store,decmposition storage model

相对于行存,列存是把一列的数据集中存储在一个page中,

这样上面的例子,就只需要读包含这两个列的page,其他page就不用读了

CMU Database Systems - Storage CMU Database Systems - Storage

列存关键的问题是如何恢复成行?

这里给的方法也很简单,如果列中的每个value都是等长的,那直接根据length除就知道是第几行的

或者,就是在每个列里面记录下tupleid

CMU Database Systems - Storage


以上所述就是小编给大家介绍的《CMU Database Systems - Storage》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Introduction to the Design and Analysis of Algorithms

Introduction to the Design and Analysis of Algorithms

Anany Levitin / Addison Wesley / 2006-2-24 / USD 122.00

Based on a Based on a new classification of algorithm design techniques and a clear delineation of analysis methods, "Introduction to the Design and Analysis of Algorithms" presents the subject in a c......一起来看看 《Introduction to the Design and Analysis of Algorithms》 这本书的介绍吧!

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具