内容简介:它们的关系我画了这张图
它们的关系我画了这张图
我来解释下这张图。
一切技术的出现都是为了解决现实问题,而现实问题分为简单问题和复杂问题。简单问题,需要简单分析,我们使用 数据分析 。复杂问题,需要复杂分析,我们使用 机器学习 。
1、什么是简单问题?
比如公司领导想知道每周的销售情况,这种就是简单问题。简单问题可以用数据分析来处理,通过分析数据来分析出有用的信息。
最简单的,你用excel分析一家淘宝店铺的销售数据,每周公司会让你出一份周报一份发现了最近几个月销量下降,然后根据分析产生销量下降的原因是什么,找到原因后制定对应的策略来提高销量。
我们来看一个真实的案例。全球最大的旅行房屋租赁社区Airbnb曾在2011年纠结于新用户增长的缓慢,有一天,他们的数据分析团队发现房源照片的精美程度,跟房源的预定人数成很大的正相关。
于是,他们提出一种假设,即“附有专业摄影照片的房源要更抢手,因此房主肯定会愿意申请Airbnb提供的此项服务”。
他们迅速上线了一个提供专业摄影照片服务的版本,然后跟原版本做A/B Test,发现同一个房源,使用专业摄影服务的比不使用的多了2-3倍的订单量。
2011年后期,Airbnb雇用了20名专业摄影师,以帮助平台上的房主拍摄房屋照片,几乎在同一时间段,Airbnb的订单量曲线有了一个陡峭的增长。
2、什么是复杂问题?
比如我们天天使用的淘宝,它会根据你的历史购物习惯(数据),来给推荐你可能感兴趣的商品。淘宝是如何做到的呢?对于这种复杂问题,淘宝背后使用的就是 机器学习 。
我再举个例子,今日头条是如何靠机器学习逆袭成为新闻客户端老大的。
2010年前后,门户时代崛起的网易、搜狐、腾讯三巨头向移动端转型,几乎垄断了当时的新闻客户端市场。而仅仅2年后,今日头条,使用“机器学习”这把屠龙刀向用户个人性化推荐用户感兴趣的新闻,一举打破巨头垄断,成为新闻客户端老大。虽然,后来腾讯和网易为了对抗头条,推出了类似的产品的天天快报和网易号,但因起步晚和算法不成熟,都失败了。
下面图片是我在知乎一个问题下回答的传播分析报告
在这份报告中,像点赞数、评论数、收藏数、总阅读量这样的分析就是简单分析。像“你可能感兴趣的人”这样的分析,就是复杂分析,需要通过机器学习算法来找到,类似于豆瓣上给你推荐感兴趣的电影、淘宝上给你推荐感兴趣的商品。
3、什么是深度学习?
机器学习分很多方法(算法),不同的方法解决不同的问题。 深度学习是机器学习中的一个分支方法 。
深度学习在图像,语音等富媒体的分类和识别上取得了非常好的效果,所以各大研究机构和公司都投入了大量的人力做相关的研究和开发。我说个例子,你肯定听说过。那就是2016年谷歌旗下DeepMind公司开发的阿尔法围棋(AlphaGo)战胜人类顶尖围棋选手。阿尔法围棋的主要工作原理就是“深度学习”。
4、什么是人工智能?
人工智能,它的范围很广,广义上的人工智能泛指通过计算机(机器)实现人的头脑思维,使机器像人一样去决策。
机器学习是实现人工智能的一种技术。所以我把人工智,机器学习,深度学习放到不同的圆圈里,他们三者是包含的关系:
现在,你已经清楚了数据分析>机器学习>深度学习>机器学习这些概念的关系了。当我们从解决现实问题的角度来看,很多概念会清楚。处理不同的问题,使用不同的方法。
5、数据分析与人工智能的关系?
你可能会问了:“上图中没看出数据分析和人工智能有什么关系呀,是不是学习数据分析没什么用?那我是不是一开始就学习机器学习了,这样可以直接进人工智能时代,享受时代红利了?”
这么想是不对的。
机器学习是很多学科的知识融合,而数据分析是机器学习的基础。只有学会了数据分析处理数据的方法,你才能看懂机器学习方面的知识。这就好比,你想上初中(机器学习),必须先读完小学(数据分析)才可以。
所以,我在下面图片中画了两条黄色的线,表示数据分析的两个方向,如果你喜欢深入技术,学会了数据分析,你才能打好基础,去学习机器学习。如果你喜欢商业方面的内容,可以往人工智能业务方向发展。
职业社交网站领英在《2018新兴工作岗位报告》中说,2018年,15个新兴职位里有6个与人工智能相关,这说明,与人工智能相关的技能开始渗透到各个行业,而不仅仅是技术行业。
领英把 人工智能技能定义为:开发和有效使用人工智能 工具 和技术的技能 。这是领英上增长最快的一个技能,从全球来看,2015年到2017年这个技能增长了190%。
之前很多人本来就是零基础,却买来一堆机器学习的课程和书来学习,最后看的是晕头转向,觉得自己不适合。
其实,这是走错了路。如果你是零基础,想进入人工智能这个相关的职业,要先从数据分析开始学起。
6、总结
1) 人工智能 指使机器像人一样去决策
2) 机器学习 是实现人工智能的一种技术
3)机器学习分很多方法(算法),不同的方法解决不同的问题。 深度学习 是机器学习中的一个分支方法。
4) 数据分析 可以帮助你从零进入人工智能时代。如果你喜欢深入技术,学会了数据分析,你才能打好基础,去学习机器学习。如果你喜欢商业方面的内容,可以往人工智能业务方向发展。
5)下面这张图是它们之间的关系
推荐: 数据分析师的前景怎么样?
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 学习:人工智能-机器学习-深度学习概念的区别
- 人工智能之机器学习篇——统计关系学习
- 人工智能、机器学习和深度学习有何区别?
- 人工智能深度学习Caffe框架介绍,优秀的深度学习架构
- 人工智能基础与安防深度学习
- 漫画人工智能:啥是机器学习?
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Coming of Age in Second Life
Tom Boellstorff / Princeton University Press / 2008-04-21 / USD 29.95
The gap between the virtual and the physical, and its effect on the ideas of personhood and relationships, is the most interesting aspect of Boellstorff's analysis... Boellstorff's portrayal of a virt......一起来看看 《Coming of Age in Second Life》 这本书的介绍吧!