人工智能基础与安防深度学习

栏目: 编程工具 · 发布时间: 5年前

内容简介:目前,AI早已成为各行业热点关键词,物理安防行业也不例外,人工智能也是一股有可能改变和重新塑造行业的重要力量。广义的人工智能(AI)指的是关于机器计算的智能,而非人类本身。在安防行业,我们所说的AI指的是机器模仿人类及其它生物认知功能的技术应用,即模仿人类大脑学习和解决问题的思路和方法。人工智能推动安防行业快速发展

目前,AI早已成为各行业热点关键词,物理安防行业也不例外,人工智能也是一股有可能改变和重新塑造行业的重要力量。

广义的人工智能(AI)指的是关于机器计算的智能,而非人类本身。在安防行业,我们所说的AI指的是机器模仿人类及其它生物认知功能的技术应用,即模仿人类大脑学习和解决问题的思路和方法。

人工智能推动安防行业快速发展

当前,计算机行业的三大趋势正在推动人工智能的快速增长。这三大趋势分别是:

首先,计算机硬件的崛起能够处理复杂的计算,尤其是图形处理器(GPU, 其使用“并行处理”模式而不是我们熟悉的CPU“串行处理”模式)。可以同时并行处理多个计算任务,效率远远高于“串行”模式。而且这是一种更具可扩展性的方案:将大问题分为许多可以同时解决的小问题来处理。其次,更有效“训练”系统编程方法的发展,特别是神经网络,它能够与GPU并行处理同时工作。

神经网络是由许多简单、高度互连的处理单元组成的计算系统,通常以层的形式构成,每层由互连的节点组成。每一层计算出的结果决定下一层的输入。神经网络可能超过一百层,因此能够将大量复杂的数据。第三,传感器(包括摄像机)的激增,产生足够大的数据,使系统能够被有效地“训练”(例如“大数据”)。

“大数据”的激增提供了大量的训练数据。而安防视频监控数据占据了大数据的60%,并且每年还在以20%的速度增长。这种数据的激增为人工智能发展提供了源动力,并且增强了系统的功能。

人工智能系统训练

在GPU上运行的神经网络中,学习规则不断优化调整连接的权重(重要性); 每一层都有不同的“权重”,反映了在前一层学到的东西。当呈现数据模型(例如视频图像)时,神经网络能够通过分析模式判断它可能是什么。

训练包括了确定初始结果与最终结果的过程,并对连接权重进行适当调整。用高度概括性的术语说,这就是AI系统的“学习”方式。不过整个“训练”过程分为多个阶段,就像过滤器一样,每个阶段的结果都引导通往正确分析的路径。

深度学习是更广泛的机器学习方法的一种类型,也是与安防视频行业最为相关的概念。深度学习需要使用大量来自能神经网络学习系统的数据(例如,视频图像)。

视频监控系统中的深度学习

神经网络互相连接的处理单元与GPU并行工作,它们被设计成模仿人类大脑通过数十亿个神经元分析处理问题。人工智能深度学习,正在成为新一代视频监控系统的基础,赋予了传统系统卓越的性能表现。

这种方法极大改变视频监控系统的有效性。在此之前,计算机已使用视频分析算法进行编程。相比之下,深度学习系统才是更加“训练有素的”。如果你想识别一只猫,则提供大量猫的图像,系统将之分解成较小的组件并寻找共性的数据。然后它就会“学习”这些案例中的共同特征。

为了最大程度地训练,系统呈现的数据越多,它就越精确,即“学习”到的越多。通过大量的案例数据学习,深度学习系统便形成相应的识别模式。

从训练到推理

在不久的将来,多智时代一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以收藏 多智时代 ,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

编程人生(上卷)

编程人生(上卷)

[美] Peter Seibel / 图灵社区 / 人民邮电出版社 / 2014-12 / 39.00元

这是一本访谈笔录,记录了当今最具个人魅力的15 位软件先驱的编程生涯。包括Donald Knuth、Jamie Zawinski、Joshua Bloch、Ken Thompson等在内的业界传奇人物,为我们讲述了他们是怎么学习编程的,在编程过程中发现了什么以及他们对未来的看法,并对诸如应该如何设计软件等长久以来一直困扰很多程序员的问题谈了自己的观点。中文版分为上下卷,上卷介绍8位大师。一起来看看 《编程人生(上卷)》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试