内容简介:目前,AI早已成为各行业热点关键词,物理安防行业也不例外,人工智能也是一股有可能改变和重新塑造行业的重要力量。广义的人工智能(AI)指的是关于机器计算的智能,而非人类本身。在安防行业,我们所说的AI指的是机器模仿人类及其它生物认知功能的技术应用,即模仿人类大脑学习和解决问题的思路和方法。人工智能推动安防行业快速发展
目前,AI早已成为各行业热点关键词,物理安防行业也不例外,人工智能也是一股有可能改变和重新塑造行业的重要力量。
广义的人工智能(AI)指的是关于机器计算的智能,而非人类本身。在安防行业,我们所说的AI指的是机器模仿人类及其它生物认知功能的技术应用,即模仿人类大脑学习和解决问题的思路和方法。
人工智能推动安防行业快速发展
当前,计算机行业的三大趋势正在推动人工智能的快速增长。这三大趋势分别是:
首先,计算机硬件的崛起能够处理复杂的计算,尤其是图形处理器(GPU, 其使用“并行处理”模式而不是我们熟悉的CPU“串行处理”模式)。可以同时并行处理多个计算任务,效率远远高于“串行”模式。而且这是一种更具可扩展性的方案:将大问题分为许多可以同时解决的小问题来处理。其次,更有效“训练”系统编程方法的发展,特别是神经网络,它能够与GPU并行处理同时工作。
神经网络是由许多简单、高度互连的处理单元组成的计算系统,通常以层的形式构成,每层由互连的节点组成。每一层计算出的结果决定下一层的输入。神经网络可能超过一百层,因此能够将大量复杂的数据。第三,传感器(包括摄像机)的激增,产生足够大的数据,使系统能够被有效地“训练”(例如“大数据”)。
“大数据”的激增提供了大量的训练数据。而安防视频监控数据占据了大数据的60%,并且每年还在以20%的速度增长。这种数据的激增为人工智能发展提供了源动力,并且增强了系统的功能。
人工智能系统训练
在GPU上运行的神经网络中,学习规则不断优化调整连接的权重(重要性); 每一层都有不同的“权重”,反映了在前一层学到的东西。当呈现数据模型(例如视频图像)时,神经网络能够通过分析模式判断它可能是什么。
训练包括了确定初始结果与最终结果的过程,并对连接权重进行适当调整。用高度概括性的术语说,这就是AI系统的“学习”方式。不过整个“训练”过程分为多个阶段,就像过滤器一样,每个阶段的结果都引导通往正确分析的路径。
深度学习是更广泛的机器学习方法的一种类型,也是与安防视频行业最为相关的概念。深度学习需要使用大量来自能神经网络学习系统的数据(例如,视频图像)。
视频监控系统中的深度学习
神经网络互相连接的处理单元与GPU并行工作,它们被设计成模仿人类大脑通过数十亿个神经元分析处理问题。人工智能深度学习,正在成为新一代视频监控系统的基础,赋予了传统系统卓越的性能表现。
这种方法极大改变视频监控系统的有效性。在此之前,计算机已使用视频分析算法进行编程。相比之下,深度学习系统才是更加“训练有素的”。如果你想识别一只猫,则提供大量猫的图像,系统将之分解成较小的组件并寻找共性的数据。然后它就会“学习”这些案例中的共同特征。
为了最大程度地训练,系统呈现的数据越多,它就越精确,即“学习”到的越多。通过大量的案例数据学习,深度学习系统便形成相应的识别模式。
从训练到推理
在不久的将来,多智时代一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以收藏 多智时代 ,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 人工智能会取代人工翻译吗?
- “人工”智能究竟需要多少人工?
- 腾讯发布人工智能辅助翻译 致敬人工翻译
- 你负责人工智能哪部分?人工那部分;知识图谱的构建主要靠人工还是机器?
- 忽略这一点,人工智能变人工智障的!
- Unity 人工智能挑战赛 全面启动,打破人工智能研究瓶颈
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
打造有吸引力的学习型社群
苏平、田士杰、吕守玉 / 机械工业出版社 / 45.00元
本书首先对社群的定位、准备和吸引粉丝方面等做了饶有趣味的介绍,从社群黏度的提升、社群知识的迭代与转化和社群的持续发展等多个角度入手,对学习型社群的运营手段、运营模式、运营规律和运营经验等进行了全方位剖析。从中国培训师沙龙这个公益社群近十年成功运营的经验中,为如何经营好学习型社群总结出了一套系统性的、具有实操价值的方法。并以此为基础,扩展到知识管理、团队管理、内容IP等领域,为有致于社团建设以及优质......一起来看看 《打造有吸引力的学习型社群》 这本书的介绍吧!