opencv与numpy的图像基本操作

栏目: Python · 发布时间: 5年前

内容简介:可以通过[行,列]坐标来访问像素点数据,对于多通道数据,返回一个数组,包含所有通道的值,对于单通道数据(如gray),返回指定坐标的值,也可以通过 [行,列,通道index] 来访问某坐标某通道的值。可以直接通过坐标修改像素值然而直接像上面这样去读取、修改每个像素的值,效率是比较低的,可以使用下面的方法,效率是更高的

可以通过[行,列]坐标来访问像素点数据,对于多通道数据,返回一个数组,包含所有通道的值,对于单通道数据(如gray),返回指定坐标的值,也可以通过 [行,列,通道index] 来访问某坐标某通道的值。

>>> import cv2
>>> import numpy as np
>>> img = cv2.imread('messi5.jpg')
>>> px = img[100,100]
>>> print( px )
[157 166 200]
# accessing only blue pixel
>>> blue = img[100,100,0]
>>> print( blue )
157

可以直接通过坐标修改像素值

>>> img[100,100] = [255,255,255]
>>> print( img[100,100] )
[255 255 255]

然而直接像上面这样去读取、修改每个像素的值,效率是比较低的,可以使用下面的方法,效率是更高的

# accessing RED value
>>> img.item(10,10,2)
59
# modifying RED value
>>> img.itemset((10,10,2),100)
>>> img.item(10,10,2)
100

1.2 读取图像属性

读取图像尺寸,返回一个元组 (行,列,通道数)

>>> print( img.shape )
(342, 548, 3)

读取像素大小, 行 通道数

>>> print( img.size )
562248

像素数据类型

>>> print( img.dtype )
uint8

1.3 图像ROI操作

可以直接编辑像素区域,例如把图像左下角50*50的像素复制到左上角

import cv2
import numpy as np
img = cv2.imread("test.jpg")
print(img.shape)
roiTest = img[475:525, 0:50]
img[0:50, 0:50] = roiTest
cv2.imshow("image",img)
cv2.waitKey(0)

opencv与numpy的图像基本操作

1.4 分割、合并通道

有些情况下需要对图像的某一通道数据进行操作,此时会用到分割、合并通道数据

>>> b,g,r = cv2.split(img)
>>> img = cv2.merge((b,g,r))

或者

b = img[:,:,0]

假设想编辑红色通道的数据,全部设置为0,不需要这样分割后编辑, img[:,:,2] = 0 这样即可。cv2.split操作是一个很耗时的操作,可以用numpy索引替代的操作,尽量用numpy索引来做。

1.4 生成图像边框

使用 cv2.copyMakeBorder 函数可添加图像边框,支持多种边框算法

void cv::copyMakeBorder    (    
InputArray     src, //原图
//目标图(cpp版本中,若传入此数据且选BORDER_TRANSPARENT,则此数据被top/bottom/left/right切出来的roi部分不会被做任何修改,此图像大小=dst.rows+top+bottom,dst.cols+left+right)
OutputArray     dst, 
int     top, //top/left/bottom/right 四个方向上的边框像素
int     bottom,
int     left,
int     right,
int     borderType, //边框类型见下图
const Scalar &     value = Scalar() //边框类型为BORDER_CONSTANT时的边框像素
)

opencv与numpy的图像基本操作

BLUE = [255, 0, 0]
    img1 = cv2.imread("test.jpg")
    replicate = cv2.copyMakeBorder(img1, 100, 100, 100, 100, cv2.BORDER_REPLICATE)
    reflect = cv2.copyMakeBorder(img1, 100, 100, 100, 100, cv2.BORDER_REFLECT)
    reflect101 = cv2.copyMakeBorder(img1, 100, 100, 100, 100, cv2.BORDER_REFLECT_101)
    wrap = cv2.copyMakeBorder(img1, 100, 100, 100, 100, cv2.BORDER_WRAP)
    constant = cv2.copyMakeBorder(img1, 100, 100, 100, 100, cv2.BORDER_CONSTANT, value=BLUE)
    print(img1.shape, reflect.shape)
    plt.subplot(231), plt.imshow(img1, 'gray'), plt.title('ORIGINAL')
    plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REPLICATE')
    plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('REFLECT')
    plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('REFLECT_101')
    plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP')
    plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT')
    plt.show()

opencv与numpy的图像基本操作 上面的例子可以比较直观的看到各种border的效果,同时也能发现,python版的api与cpp版本的相比,默认初始化了一块原始图尺寸+各方向边框尺寸的图像内存,作为内置的dst参数。

输出尺寸:(525, 700, 3) (725, 900, 3)

2. 图像的基本算术操作

2.1 图像相加

图像相加,两个图像应该有相同的shape,或者图像和一个标量相加,或者图像和一个与其通道数相同的一维数组相加。

opencv的相加与numpy相加时,在超出数据类型范围时的处理不同

>>> x = np.uint8([250])
>>> y = np.uint8([10])
>>> print( cv2.add(x,y) ) # 250+10 = 260 => 255
[[255]]
>>> print( x+y )          # 250+10 = 260 % 256 = 4
[4]

cpp版本的api还支持mask等参数

void cv::add    (    
InputArray     src1,
InputArray     src2,
OutputArray     dst,
InputArray     mask = noArray(),
int     dtype = -1 
)

2.2 图像混合

opencv通过 cv::addWeighted 函数提供了将两个图像混合在一起的方法

dst=α⋅img1+β⋅img2+γ

img1 = cv2.imread('ml.png')
img2 = cv2.imread('opencv-logo.png')
dst = cv2.addWeighted(img1,0.7,img2,0.3,0)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

opencv与numpy的图像基本操作

通过cv2.seamlessClone函数还能做更精细的图像局部融合。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

马尔可夫链:模型、算法与应用

马尔可夫链:模型、算法与应用

Wai-Ki Ching、Ximin Huang / 陈曦 / 清华大学出版社 / 2015-6 / 39

《马尔可夫链:模型、算法与应用 应用数学译丛》讲述了马尔可夫链模型在排队系统、网页重要性排名、制造系统、再制造系统、库存系统以及金融风险管理等方面的最新应用进展.全书共安排8章内容,第1章介绍马尔可夫链、隐马尔可夫模型和马尔可夫决策过程的基本理论和方法,其余7章分别介绍马尔可夫链模型在不同领域中的应用. 《马尔可夫链:模型、算法与应用 应用数学译丛》可作为自动化、工业工程、统计学、应用数学以及管理......一起来看看 《马尔可夫链:模型、算法与应用》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具