内容简介:如果有哪里卡壳或者不怎么清楚的,可以回过头再复习一下。正所谓温故知新,这种通过实际问题查缺补漏的学习方法,非常利于你巩固前面讲的知识点,你可要好好珍惜这次机会哦!假设猎聘网有 10 万名猎头顾问,每个猎头顾问都可以通过做任务(比如发布职位),来积累积分,然后通过积分来下载简历。
《数据结构与算法之美》 专栏最重要的基础篇马上就要讲完了,我从前面的文章中挑选了几个例子,稍加修改,组成了一套测试题。你先不要着急看答案,自己先想一想怎么解决,测一测自己对之前的知识掌握的程度。
如果有哪里卡壳或者不怎么清楚的,可以回过头再复习一下。正所谓温故知新,这种通过实际问题查缺补漏的学习方法,非常利于你巩固前面讲的知识点,你可要好好珍惜这次机会哦!
实战测试题(一)
假设猎聘网有 10 万名猎头顾问,每个猎头顾问都可以通过做任务(比如发布职位),来积累积分,然后通过积分来下载简历。 假设你是猎聘网的一名工程师,如何在内存中存储这 10 万个猎头 ID 和积分信息,让它能够支持这样几个操作:
- 根据猎头的 ID 快速查找、删除、更新这个猎头的积分信息;
- 查找积分在某个区间的猎头 ID 列表;
- 查询积分从小到大排在第 x 位的猎头 ID 信息;
- 查找按照积分从小到大排名在第 x 位到第 y 位之间的猎头 ID 列表。
题目解析
这个问题既要通过 ID 来查询,又要通过积分来查询,所以,对于猎头这样一个对象,我们需要将其组织成两种数据结构,才能支持这两类操作。
我们按照 ID,将猎头信息组织成散列表。这样,就可以根据 ID 信息快速的查找、删除、更新猎头的信息。我们按照积分,将猎头信息组织成跳表这种数据结构,按照积分来查找猎头信息,就非常高效,时间复杂度是 O(logn)。
我刚刚讲的是针对第一个、第二个操作的解决方案。第三个、第四个操作是类似的,按照排名来查询,这两个操作该如何实现呢?
我们可以对刚刚的跳表进行改造,每个索引结点中加入一个 span 字段,记录这个索引结点到下一个索引结点的包含的链表结点的个数。这样就可以利用跳表索引,快速计算出排名在某一位的猎头或者排名在某个区间的猎头列表。
实际上,这些就是 Redis 中有序集合这种数据类型的实现原理。在开发中,我们并不需要从零开始代码实现一个散列表和跳表,我们可以直接利用 Redis 的有序集合来完成。
实战测试题(二)
电商交易系统中,订单数据一般都会很大,我们一般都分库分表来存储。假设我们分了 10 个库并存储在不同的机器上,在不引入复杂的分库分表中间件的情况下,我们希望开发一个小的功能,能够快速地查询金额最大的前 K 个订单(K 是输入参数,可能是 1、10、1000、10000,假设最大不会超过 10 万)。 如果你是这个功能的设计开发负责人,你会如何设计一个比较详细的、可以落地执行的设计方案呢?
为了方便你设计,我先交代一些必要的背景,在设计过程中,如果有其他需要明确的背景,你可以自行假设。
- 数据库中,订单表的金额字段上建有索引,我们可以通过 select order by limit 语句来获取数据库中的数据;
- 我们的机器的可用内存有限,比如只有几百 M 剩余可用内存。希望你的设计尽量节省内存,不要发生 Out of Memory Error。
题目解析
解决这个题目的基本思路我想你应该能想到,就是借助归并 排序 中的合并函数,这个我们在排序(下)以及堆的应用那一节中讲过。
我们从每个数据库中,通过 select order by limit 语句,各取局部金额最大的订单,把取出来的 10 个订单放到优先级队列中,取出最大值(也就是大顶堆堆顶数据),就是全局金额最大的订单。然后再从这个全局金额最大订单对应的数据库中,取出下一条订单(按照订单金额从大到小排列的),然后放到优先级队列中。一直重复上面的过程,直到找到金额前 K(K 是用户输入的)大订单。
从算法的角度看起来,这个方案非常完美,但是,从实战的角度来说,这个方案并不高效,甚至很低效。因为我们忽略了,数据库读取数据的性能才是这个问题的性能瓶颈。所以,我们要尽量减少 SQL 请求,每次多取一些数据出来,那一次性取出多少才合适呢?这就比较灵活、比较有技巧了。一次性取太多,会导致数据量太大,SQL 执行很慢,还有可能触发超时,而且,我们题目中也说了,内存有限,太多的数据加载到内存中,还有可能导致 OOM。
所以,一次性不能取太多数据,也不能取太少数据,到底是多少,还要根据实际的硬件环境做 benchmark 测试去找最合适的。
实战测试题(三)
我们知道,CPU 资源是有限的,任务的处理速度与线程个数并不是线性正相关。相反,过多的线程反而会导致 CPU 频繁切换,处理性能下降。所以,线程池的大小一般都是综合考虑要处理任务的特点和硬件环境,来事先设置的。
当我们向固定大小的线程池中请求一个线程时,如果线程池中没有空闲资源了,这个时候线程池如何处理这个请求?是拒绝请求还是排队请求?各种处理策略又是怎么实现的呢?
题目解析
这个问题的答案涉及队列这种数据结构。队列可以应用在任何有限资源池中,用于排队请求,比如数据库连接池等。实际上,对于大部分资源有限的场景,当没有空闲资源时,基本上都可以通过“队列”这种数据结构来实现请求排队。
这个问题的具体答案,在队列那一节我已经讲得非常详细了,你可以回去看看,这里我就不赘述了。
实战测试题(四)
通过 IP 地址来查找 IP 归属地的功能,不知道你有没有用过?没用过也没关系,你现在可以打开百度,在搜索框里随便输一个 IP 地址,就会看到它的归属地。
这个功能并不复杂,它是通过维护一个很大的 IP 地址库来实现的。地址库中包括 IP 地址范围和归属地的对应关系。比如,当我们想要查询 202.102.133.13 这个 IP 地址的归属地时,我们就在地址库中搜索,发现这个 IP 地址落在 [202.102.133.0, 202.102.133.255] 这个地址范围内,那我们就可以将这个 IP 地址范围对应的归属地“山东东营市”显示给用户了。
复制代码
[202.102.133.0,202.102.133.255] 山东东营市 [202.102.135.0,202.102.136.255] 山东烟台 [202.102.156.34,202.102.157.255] 山东青岛 [202.102.48.0,202.102.48.255] 江苏宿迁 [202.102.49.15,202.102.51.251] 江苏泰州 [202.102.56.0,202.102.56.255] 江苏连云港
在庞大的地址库中逐一比对 IP 地址所在的区间,是非常耗时的。 假设在内存中有 12 万条这样的 IP 区间与归属地的对应关系,如何快速定位出一个 IP 地址的归属地呢?
相关章节
15 | 二分查找(上):如何用最省内存的方式实现快速查找功能?
题目解析
这个问题可以用二分查找来解决,不过,普通的二分查找是不行的,我们需要用到二分查找的变形算法,查找最后一个小于等于某个给定值的数据。不过,二分查找最难的不是原理,而是实现。要实现一个二分查找的变形算法,并且实现的代码没有 bug,可不是一件容易的事情,不信你自己写写试试。
关于这个问题的解答以及写出 bug free 的二分查找代码的技巧,我们在二分查找(下)那一节有非常详细的讲解,你可以回去看看,我这里就不赘述了。
实战测试题(五)
假设我们现在希望设计一个简单的海量图片存储系统,最大预期能够存储 1 亿张图片,并且希望这个海量图片存储系统具有下面这样几个功能:
- 存储一张图片及其它的元信息,主要的元信息有:图片名称以及一组 tag 信息。比如图片名称叫玫瑰花,tag 信息是{红色,花,情人节};
- 根据关键词搜索一张图片,比如关键词是“情人节 花”“玫瑰花”;
- 避免重复插入相同的图片。这里,我们不能单纯地用图片的元信息,来比对是否是同一张图片,因为有可能存在名称相同但图片内容不同,或者名称不同图片内容相同的情况。
我们希望自助开发一个简单的系统,不希望借助和维护过于复杂的三方系统,比如数据库(MySQL、Redis 等)、分布式存储系统(GFS、Bigtable 等),并且我们单台机器的性能有限,比如硬盘只有 1TB,内存只有 2GB, 如何设计一个符合我们上面要求,操作高效,且使用机器资源最少的存储系统呢?
题目解析
这个问题可以分成两部分,第一部分是根据元信息的搜索功能,第二部分是图片判重。
第一部分,我们可以借助搜索引擎中的倒排索引结构。关于倒排索引我会在实战篇详细讲解,我这里先简要说下。
如题目中所说,一个图片会对应一组元信息,比如玫瑰花对应{红色,花,情人节},牡丹花对应{白色,花},我们可以将这种图片与元信息之间的关系,倒置过来建立索引。“花”这个关键词对应{玫瑰花,牡丹花},“红色”对应{玫瑰花},“白色”对应{牡丹花},“情人节”对应{玫瑰花}。
当我们搜索“情人节 花”的时候,我们拿两个搜索关键词分别在倒排索引中查找,“花”查找到了{玫瑰花,牡丹花},“情人节”查找到了{玫瑰花},两个关键词对应的结果取交集,就是最终的结果了。
第二部分关于图片判重,我们要基于图片本身来判重,所以可以用哈希算法,对图片内容取哈希值。我们对哈希值建立散列表,这样就可以通过哈希值以及散列表,快速判断图片是否存在。
我这里只说说我的思路,这个问题中还有详细的内存和硬盘的限制。要想给出更加详细的设计思路,还需要根据这些限制,给出一个估算。详细的解答,我都放在在哈希算法(下)那一节里到了,你可以自己回去看。
实战测试题(六)
我们知道,散列表的查询效率并不能笼统地说成是 O(1)。它跟散列函数、装载因子、散列冲突等都有关系。如果散列函数设计得不好,或者装载因子过高,都可能导致散列冲突发生的概率升高,查询效率下降。
在极端情况下,有些恶意的攻击者,还有可能通过精心构造的数据,使得所有的数据经过散列函数之后,都散列到同一个槽里。如果我们使用的是基于链表的冲突解决方法,那这个时候,散列表就会退化为链表,查询的时间复杂度就从 O(1) 急剧退化为 O(n)。
如果散列表中有 10 万个数据,退化后的散列表查询的效率就下降了 10 万倍。更直观点说,如果之前运行 100 次查询只需要 0.1 秒,那现在就需要 1 万秒。这样就有可能因为查询操作消耗大量 CPU 或者线程资源,导致系统无法响应其他请求,从而达到拒绝服务攻击(DoS)的目的。这也就是散列表碰撞攻击的基本原理。
如何设计一个可以应对各种异常情况的工业级散列表,来避免在散列冲突的情况下,散列表性能的急剧下降,并且能抵抗散列碰撞攻击?
题目解析
我经常把这道题拿来作为面试题考察候选人。散列表可以说是我们最常用的一种数据结构了,编程语言中很多数据类型,都是用散列表来实现的。尽管很多人能对散列表都知道一二,知道有几种散列表冲突解决方案,知道散列表操作的时间复杂度,但是理论跟实践还是有一定距离的。光知道这些基础的理论并不足以开发一个工业级的散列表。
所以,我在散列表(中)那一节中详细给你展示了一个工业级的散列表要处理哪些问题,以及如何处理的,也就是这个问题的详细答案。
这六道题你回答得怎么样呢?或许你还无法 100% 回答正确,没关系。其实只要你看了解析之后,有比较深的印象,能立马想到哪节课里讲过,这已经说明你掌握得不错了。毕竟想要完全掌握我讲的全部内容还是需要时间沉淀的。对于 《数据结构与算法之美》 这门专栏的学习,你一定不要心急,慢慢来。只要方向对了就都对了,剩下就交给时间和努力吧!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 一文览尽谷歌ICML 2019 成果
- 谷歌科研成果 2018 年年终总结(下篇)
- 谷歌科研成果 2018 年年终总结(上篇)
- 互联网基建成果,快速实现一个 Clubhouse 要多久
- 一键生成果照,程序员又出奇葩软件
- 2018世界互联网15项领先科技成果重磅发布
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
CSS 压缩/解压工具
在线压缩/解压 CSS 代码
Markdown 在线编辑器
Markdown 在线编辑器