内容简介:ICML 2019结束后,大家是否意犹未尽呢?雷锋字幕组成员为你编译整理了 Google ICML 2019 成果集锦,供大家查看学习。
ICML 2019结束后,大家是否意犹未尽呢?雷锋字幕组成员为你编译整理了 Google ICML 2019 成果集锦,供大家查看学习。
翻译 | 汪鹏、敬爱的勇哥 编辑 | 王立鱼
原文链接:
https://ai.googleblog.com/2019/06/google-at-icml-2019.html
注:文中所示部分录用论文为AI研习社精选论文,完整论文合集请点击阅读原文查看~
机器学习是Google的一个关键战略重点,高度活跃的团队致力于该领域中包括深度学习、经典的算法、探索理论和应用等几乎所有方面的研究。我们利用可扩展的 工具 和体系结构来构建机器学习系统,使我们能够解决语言、语音、翻译、音乐、视觉处理等领域的科学和工程难题。
作为一个在机器学习研究中的领导者,Google是三十六届机器学习国际会议(ICML 2019)的蓝宝石赞助商(Sapphire Sponsor),该会议是国际机器学习领域的年度盛会,今年的会议将会于本周在加州长滩举办。将有近200名Google员工在会议上发表论文或参与到会后的研讨会中,我们期待与这个巨大的机器学习研究社区的继续合作。
如果你参加ICML 2019,希望你能来到Google展台了解那些激动人心的工作,看到我们创造性和趣味性的去解决该领域的一些最有趣的挑战,与研究人员一起讨论Google研究足球环境,AdaNet,Google机器人等等。在下面的列表中,您还可以了解更多关于Google论文的信息,这些研究结果将在ICML 2019上发表(Google的附属单位或组织用蓝色高亮显示)。
ICML 2019 委员会
Board Members include: Andrew McCallum, Corinna Cortes, Hugo Larochelle, William Cohen(Emeritus)
Senior Area Chairs include: Charles Sutton, Claudio Gentile, Corinna Cortes, Kevin Murphy, Mehryar Mohri, Nati Srebro, Samy Bengio, Surya Ganguli
Area Chairs include: Jacob Abernethy, William Cohen, Dumitru Erhan, Cho-Jui Hsieh, Chelsea Finn, Sergey Levine, Manzil Zaheer, Sergei Vassilvitskii, Boqing Gong, Been Kim, Dale Schuurmans, Danny Tarlow, Dustin Tran, Hanie Sedghi, Honglak Lee, Jasper Snoek, Lihong Li, Minmin Chen, Mohammad Norouzi, Nicolas Le Roux, Phil Long, Sanmi Koyejo, Timnit Gebru, Vitaly Feldman, Satyen Kale, Katherine Heller, Hossein Mobahi, Amir Globerson, Ilya Tolstikhin, Marco Cuturi, Sebastian Nowozin, Amin Karbasi, Ohad Shamir, Graham Taylor
录用论文
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
-
作者:Francesco Locatello, Stefan Bauer, Mario Lučić, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf,Olivier Bachem (Recipient of an ICML 2019 Best Paper Award)
-
论文地址:http://proceedings.mlr.press/v97/locatello19a/locatello19a.pdf
Learning to Groove with Inverse Sequence Transformations
-
作者: Jon Gillick, Adam Roberts, Jesse Engel, Douglas Eck, David Bamman
-
论文地址:http://proceedings.mlr.press/v97/gillick19a/gillick19a.pdf
Metric-Optimized Example Weights
-
作者: Sen Zhao, Mahdi Milani Fard, Harikrishna Narasimhan, Maya Gupta
-
论文地址:http://proceedings.mlr.press/v97/zhao19b/zhao19b.pdf
HOList: An Environment for Machine Learning of Higher Order Logic Theorem Proving
-
作者: Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, Stewart Wilcox
-
论文地址:http://proceedings.mlr.press/v97/bansal19a/bansal19a.pdf
Learning to Clear the Market
-
作者: Weiran Shen, Sebastien Lahaie, Renato Paes Leme
-
论文地址:http://proceedings.mlr.press/v97/shen19b/shen19b.pdf
Shape Constraints for Set Functions
-
作者: Andrew Cotter, Maya Gupta, Heinrich Jiang, Erez Louidor, James Muller, Tamann Narayan, Serena Wang, Tao Zhu
-
论文地址:http://proceedings.mlr.press/v97/cotter19a/cotter19a.pdf
Self-Attention Generative Adversarial Networks
-
作者: Han Zhang, Ian Goodfellow, Dimitris Metaxas, Augustus Odena
-
论文地址:http://proceedings.mlr.press/v97/zhang19d/zhang19d.pdf
High-Fidelity Image Generation With Fewer Labels
-
作者: Mario Lučić, Michael Tschannen, Marvin Ritter, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly
-
论文地址:http://proceedings.mlr.press/v97/lucic19a/lucic19a.pdf
-
Learning Optimal Linear Regularizers
-
作者: Matthew Streeter
-
论文地址:http://proceedings.mlr.press/v97/streeter19a/streeter19a.pdf
DeepMDP: Learning Continuous Latent Space Models for Representation Learning
-
作者: Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, Marc G. Bellemare
-
论文地址:http://proceedings.mlr.press/v97/gelada19a/gelada19a.pdf
kernelPSI: a Post-Selection Inference Framework for Nonlinear Variable Selection
-
作者: Lotfi Slim, Clément Chatelain, Chloe-Agathe Azencott, Jean-Philippe Vert
-
论文地址:http://proceedings.mlr.press/v97/slim19a/slim19a.pdf
Learning from a Learner
-
作者: Alexis Jacq, Matthieu Geist, Ana Paiva, Olivier Pietquin
-
论文地址:http://proceedings.mlr.press/v97/jacq19a/jacq19a.pdf
Rate Distortion For Model Compression:From Theory To Practice
-
作者: Weihao Gao, Yu-Han Liu, Chong Wang, Sewoong Oh
-
论文地址:http://proceedings.mlr.press/v97/gao19c/gao19c.pdf
An Investigation into Neural Net Optimization via Hessian Eigenvalue Density
-
作者: Behrooz Ghorbani, Shankar Krishnan, Ying Xiao
-
论文地址:http://proceedings.mlr.press/v97/ghorbani19b/ghorbani19b.pdf
Graph Matching Networks for Learning the Similarity of Graph Structured Objects
-
作者: Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, Pushmeet Kohli
-
论文地址:http://proceedings.mlr.press/v97/li19d/li19d.pdf
Subspace Robust Wasserstein Distances
-
作者: François-Pierre Paty, Marco Cuturi
-
论文地址:http://proceedings.mlr.press/v97/paty19a/paty19a.pdf
Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints
-
作者: Andrew Cotter, Maya Gupta, Heinrich Jiang, Nathan Srebro, Karthik Sridharan, Serena Wang, Blake Woodworth, Seungil You
-
论文地址:http://proceedings.mlr.press/v97/cotter19b/cotter19b.pdf
The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study
-
作者: Daniel Park, Jascha Sohl-Dickstein, Quoc Le, Samuel Smith
-
论文地址:http://proceedings.mlr.press/v97/park19b/park19b.pdf
A Theory of Regularized Markov Decision Processes
-
作者: Matthieu Geist, Bruno Scherrer, Olivier Pietquin
-
论文地址:http://proceedings.mlr.press/v97/geist19a/geist19a.pdf
Area Attention
-
作者: Yang Li, Łukasz Kaiser, Samy Bengio, Si Si
-
论文地址:http://proceedings.mlr.press/v97/li19e/li19e.pdf
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
-
作者: Mingxing Tan, Quoc Le
-
论文地址:http://proceedings.mlr.press/v97/tan19a/tan19a.pdf
Static Automatic Batching In TensorFlow
-
作者: Ashish Agarwal
-
论文地址:http://proceedings.mlr.press/v97/agarwal19a/agarwal19a.pdf
The Evolved Transformer
-
作者: David So, Quoc Le, Chen Liang
-
论文地址:http://proceedings.mlr.press/v97/so19a/so19a.pdf
Policy Certificates: Towards Accountable Reinforcement Learning
-
作者: Christoph Dann, Lihong Li, Wei Wei, Emma Brunskill
-
论文地址:http://proceedings.mlr.press/v97/dann19a/dann19a.pdf
Self-similar Epochs: Value in Arrangement
作者: Eliav Buchnik, Edith Cohen, Avinatan Hasidim, Yossi Matias
-
论文地址:http://proceedings.mlr.press/v97/buchnik19a/buchnik19a.pdf
The Value Function Polytope in Reinforcement Learning
-
作者: Robert Dadashi, Marc G. Bellemare, Adrien Ali Taiga, Nicolas Le Roux, Dale Schuurmans
-
论文地址:http://proceedings.mlr.press/v97/dadashi19a/dadashi19a.pdf
Adversarial Examples Are a Natural Consequence of Test Error in Noise
-
作者: Justin Gilmer, Nicolas Ford, Nicholas Carlini, Ekin Cubuk
-
论文地址:http://proceedings.mlr.press/v97/gilmer19a/gilmer19a.pdf
SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
-
作者: Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, Sergey Levine
-
论文地址:http://proceedings.mlr.press/v97/zhang19m/zhang19m.pdf
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits
-
作者: Branislav Kveton, Csaba Szepesvari, Sharan Vaswani, Zheng Wen, Tor Lattimore, Mohammad Ghavamzadeh
-
论文地址:http://proceedings.mlr.press/v97/kveton19a/kveton19a.pdf
Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition
-
作者: Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow, Colin Raffel
-
论文地址:http://proceedings.mlr.press/v97/qin19a/qin19a.pdf
Direct Uncertainty Prediction for Medical Second Opinions
-
作者: Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Bobby Kleinberg, Sendhil Mullainathan, Jon Kleinberg
-
论文地址:http://proceedings.mlr.press/v97/raghu19a/raghu19a.pdf
A Large-Scale Study on Regularization and Normalization in GANs
-
作者: Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michalski, Sylvain Gelly
-
论文地址:http://proceedings.mlr.press/v97/kurach19a/kurach19a.pdf
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
-
作者: Shanshan Wu, Alex Dimakis, Sujay Sanghavi, Felix Yu, Daniel Holtmann-Rice, Dmitry Storcheus, Afshin Rostamizadeh, Sanjiv Kumar
-
论文地址:http: //proceedings.mlr.press/v97/wu19b/wu19b.pdf
NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks
-
作者: Yandong Li, Lijun Li, Liqiang Wang, Tong Zhang, Boqing Gong
-
论文地址:http://proceedings.mlr.press/v97/li19g/li19g.pdf
Distributed Weighted Matching via Randomized Composable Coresets
-
作者: Sepehr Assadi, Mohammad Hossein Bateni, Vahab Mirrokni
-
论文地址:http://proc eedings.mlr.press/v97/assadi19a/assadi19a.pdf
Monge blunts Bayes: Hardness Results for Adversarial Training
-
作者: Zac Cranko, Aditya Menon, Richard Nock, Cheng Soon Ong, Zhan Shi, Christian Walder
-
论文地址:http://proceedings.mlr.press/v97/cranko19a/cranko19a.pdf
Generalized Majorization-Minimization
-
作者: Sobhan Naderi Parizi, Kun He, Reza Aghajani, Stan Sclaroff, Pedro Felzenszwalb
-
论文地址:http://proceedings.mlr.press/v97/parizi19a/parizi19a.pdf
NAS-Bench-101: Towards Reproducible Neural Architecture Search
-
作者: Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, Frank Hutter
-
论文地址:http://proceedings.mlr.press/v97/ying19a/ying19a.pdf
Variational Russian Roulette for Deep Bayesian Nonparametrics
-
作者: Kai Xu, Akash Srivastava, Charles Sutton
-
论文地址:http://proceedings.mlr.press/v97/xu19e/xu19e.pdf
Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization
-
作者: Zhenxun Zhuang, Ashok Cutkosky, Francesco Orabona
-
论文地址:http://proceedings.mlr.press/v97/zhuang19a/zhuang19a.pdf
Improved Parallel Algorithms for Density-Based Network Clustering
-
作者: Mohsen Ghaffari, Silvio Lattanzi, Slobodan Mitrović
-
论文地址:http://proceedings.mlr.press/v97/ghaffari19a/ghaffari19a.pdf
The Advantages of Multiple Classes for Reducing Overfitting from Test Set Reuse
-
作者: Vitaly Feldman, Roy Frostig, Moritz Hardt
-
论文地址:http://proceedings.mlr.press/v97/feldman19a/feldman19a.pdf
Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity
-
作者: Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, Amin Karbasi
-
论文地址:http://proceedings.mlr.press/v97/kazemi19a/kazemi19a.pdf
Hiring Under Uncertainty
-
作者: Manish Purohit, Sreenivas Gollapudi, Manish Raghavan
-
论文地址:http://proceedings.mlr.press/v97/purohit19a/purohit19a.pdf
A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes
-
作者: Jennifer Gillenwater, Alex Kulesza, Zelda Mariet, Sergei Vassilvtiskii
-
论文地址:http://proceedings.mlr.press/v97/gillenwater19a/gillenwater19a.pdf
Statistics and Samples in Distributional Reinforcement Learning
-
作者: Mark Rowland, Robert Dadashi, Saurabh Kumar, Remi Munos, Marc G. Bellemare, Will Dabney
-
论文地址:http://proceedings.mlr.press/v97/rowland19a/rowland19a.pdf
Provably Efficient Maximum Entropy Exploration
-
作者: Elad Hazan, Sham Kakade, Karan Singh, Abby Van Soest
-
论文地址:http://proceedings.mlr.press/v97/hazan19a/hazan19a.pdf
Active Learning with Disagreement Graphs
-
作者: Corinna Cortes, Giulia DeSalvo,, Mehryar Mohri, Ningshan Zhang, Claudio Gentile
-
论文地址:http://proceedings.mlr.press/v97/cortes19b/cortes19b.pdf
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
-
作者: Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan
-
论文地址:http://proceedings.mlr.press/v97/abu-el-haija19a/abu-el-haija19a.pdf
Understanding the Impact of Entropy on Policy Optimization
-
作者: Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, Dale Schuurmans
-
论文地址:http://proceedings.mlr.press/v97/ahmed19a/ahmed19a.pdf
Matrix-Free Preconditioning in Online Learning
-
作者: Ashok Cutkosky, Tamas Sarlos
-
论文地址:http://proceedings.mlr.press/v97/cutkosky19b/cutkosky19b.pdf
State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations
-
作者: Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Ioannis Mitliagkas, Yoshua Bengio, Michael Mozer
-
论文地址:http://proceedings.mlr.press/v97/lamb19a/lamb19a.pdf
Online Convex Optimization in Adversarial Markov Decision Processes
-
作者: Aviv Rosenberg, Yishay Mansour
-
论文地址:http://proceedings.mlr.press/v97/rosenberg19a/rosenberg19a.pdf
Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy
-
作者: Kareem Amin, Alex Kulesza, Andres Munoz Medina, Sergei Vassilvtiskii
-
论文地址:http://proceedings.mlr.press/v97/amin19a/amin19a.pdf
Complementary-Label Learning for Arbitrary Losses and Models
-
作者: Takashi Ishida, Gang Niu, Aditya Menon, Masashi Sugiyama
-
论文地址:http://proceedings.mlr.press/v97/ishida19a/ishida19a.pdf
Learning Latent Dynamics for Planning from Pixels
-
作者: Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, James Davidson
-
论文地址:http://proceedings.mlr.press/v97/hafner19a/hafner19a.pdf
Unifying Orthogonal Monte Carlo Methods
-
作者: Krzysztof Choromanski, Mark Rowland, Wenyu Chen, Adrian Weller
-
论文地址:http://proceedings.mlr.press/v97/choromanski19a/choromanski19a.pdf
Differentially Private Learning of Geometric Concepts
-
作者: Haim Kaplan, Yishay Mansour, Yossi Matias, Uri Stemmer
-
论文地址:http://proceedings.mlr.press/v97/kaplan19a/kaplan19a.pdf
Online Learning with Sleeping Experts and Feedback Graphs
-
作者: Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Scott Yang
-
论文地址:http://proceedings.mlr.press/v97/cortes19a/cortes19a.pdf
Adaptive Scale-Invariant Online Algorithms for Learning Linear Models
-
作者: Michal Kempka, Wojciech Kotlowski, Manfred K. Warmuth
-
论文地址:http://proceedings.mlr.press/v97/kempka19a/kempka19a.pdf
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing
-
作者: Augustus Odena, Catherine Olsson, David Andersen, Ian Goodfellow
-
论文地址:http://proceedings.mlr.press/v97/odena19a/odena19a.pdf
文中所示部分录用论文为AI研习社精选论文,完整论文合集请点击阅读原文查看~
滑动查看更多内容
扫码下载 CVPR 2019 论文合集
赶紧来围观CVPR
CVPR 2019 Accepted Papers
扫码查看论文推荐
《用于全景分割的端到端闭环网络》
扫码查看
视频目标检测大列表
<< 滑动查看更多栏目 >>
点击 阅读原文 ,查看本文更多内容
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 测一测你的算法阶段学习成果
- 谷歌科研成果 2018 年年终总结(下篇)
- 谷歌科研成果 2018 年年终总结(上篇)
- 互联网基建成果,快速实现一个 Clubhouse 要多久
- 一键生成果照,程序员又出奇葩软件
- 2018世界互联网15项领先科技成果重磅发布
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Java 8实战
厄马(Raoul-Gabriel Urma)、弗斯科(Mario Fusco)、米克罗夫特(Alan Mycroft) / 陆明刚、劳佳 / 人民邮电出版社 / 2016-4-1 / CNY 79.00
本书全面介绍了Java 8 这个里程碑版本的新特性,包括Lambdas、流和函数式编程。有了函数式的编程特性,可以让代码更简洁,同时也能自动化地利用多核硬件。全书分四个部分:基础知识、函数式数据处理、高效Java 8 编程和超越Java 8,清晰明了地向读者展现了一幅Java 与时俱进的现代化画卷。一起来看看 《Java 8实战》 这本书的介绍吧!