内容简介:这一章,我们来学习一下event_loop, 本文内容旨在厘清浏览器(browsing context)和Node环境中不同的 Event Loop。首先清楚一点:浏览器环境和 node环境的为了协调事件、用户交互、脚本、UI渲染、网络请求等行为,用户引擎必须使用
这一章,我们来学习一下event_loop, 本文内容旨在厘清浏览器(browsing context)和Node环境中不同的 Event Loop。
首先清楚一点:浏览器环境和 node环境的 event-loop
完全不一样。
浏览器环境
为了协调事件、用户交互、脚本、UI渲染、网络请求等行为,用户引擎必须使用 Event Loop
。 event loop
包含两类:基于browsing contexts,基于worker。
本文讨论的浏览器中的EL基于browsing contexts
上面图中,关键性的两点:
同步任务直接进入主执行栈(call stack)中执行
等待主执行栈中任务执行完毕,由EL将异步任务推入主执行栈中执行
task——宏任务
task在网上也被成为 macrotask
(宏任务)
宏任务分类:
script代码
setTimeout/setInterval
setImmediate (未实现)
I/O
UI交互
宏任务特征
一个 event loop
中,有一个或多个 task队列。
不同的task会放入不同的task队列中:比如,浏览器会为鼠标键盘事件分配一个task队列,为其他的事件分配另外的队列。
先进队列的先被执行
microtask——微任务
微任务
微任务的分类
通常下面几种任务被认为是microtask
promise( promise
的 then
和 catch
才是microtask,本身其内部的代码并不是)
MutationObserver
process.nextTick(nodejs环境中)
微任务特性
一个EL中只有一个microtask队列。
event-loop的循环过程
一个EL只要存在,就会不断执行下边的步骤:
先执行同步代码,所有微任务,一个宏任务,所有微任务(,更新渲染),一个宏任务,所有微任务(,更新渲染)...... 执行完microtask队列里的任务,有可能会渲染更新。在一帧以内的多次dom变动浏览器不会立即响应,而是会积攒变动以最高60HZ的频率更新视图
例子
setTimeout(() => console.log('setTimeout1'), 0); setTimeout(() => { console.log('setTimeout2'); Promise.resolve().then(() => { console.log('promise3'); Promise.resolve().then(() => { console.log('promise4'); }) console.log(5) }) setTimeout(() => console.log('setTimeout4'), 0); }, 0); setTimeout(() => console.log('setTimeout3'), 0); Promise.resolve().then(() => { console.log('promise1'); }) 复制代码
打印出来的结果是 :
promise1 setTimeout1 setTimeout2 'promise3' 5 promise4 setTimeout3 setTimeout4 复制代码
另外一个例子:
console.log('script start') async function async1() { await async2() console.log('async1 end') } async function async2() { console.log('async2 end') } async1() setTimeout(function () { console.log('setTimeout') }, 0) new Promise(resolve => { console.log('Promise') resolve() }) .then(function () { console.log('promise1') setTimeout(() => { console.log('sssss') }, 0) }) .then(function () { console.log('promise2') }) console.log('script end') 复制代码
在浏览器内输出结果如下, node内输出结果不同
'script start' 'async2 end' 'Promise' 'script end' 'async1 end' 'promise1' 'promise2' 'setTimeout' 'sssss' 复制代码
-
await 只是
fn().then()
这些写法的语法糖,相当于await
那一行代码下面的代码都被当成一个微任务,推入到了microtask queue
中 -
顺序:执行完同步任务,执行微任务队列中的全部的微任务,执行一个宏任务,执行全部的微任务
node 环境中
Node中的 event-loop
由 libuv库 实现,js是单线程的,会把回调和任务交给libuv
event loop
首先会在内部维持多个事件队列,比如 时间队列、网络队列等等,而libuv会执行一个相当于 while true的无限循环,不断的检查各个事件队列上面是否有需要处理的pending状态事件,如果有则按顺序去触发队列里面保存的事件,同时由于libuv的事件循环每次只会执行一个回调,从而避免了 竞争的发生
个人理解,它与浏览器中的轮询机制(一个task,所有microtasks;一个task,所有microtasks…)最大的不同是,node轮询有phase(阶段)的概念,不同的任务在不同阶段执行,进入下一阶段之前执行所有的process.nextTick() 和 所有的microtasks。
阶段
timers阶段
在这个阶段检查是否有超时的timer(setTimeout/setInterval),有的话就执行他们的回调 但timer设定的阈值不是执行回调的确切时间(只是最短的间隔时间),node内核调度机制和其他的回调函数会推迟它的执行 由poll阶段来控制什么时候执行timers callbacks 复制代码
I/O callback 阶段
处理异步事件的回调,比如网络I/O,比如文件读取I/O,当这些事件报错的时候,会在 `I/O` callback阶段执行 复制代码
poll 阶段
这里是最重要的阶段,poll阶段主要的两个功能: 处理poll queue的callbacks 回到timers phase执行timers callbacks(当到达timers指定的时间时) 进入poll阶段,timer的设定有下面两种情况: 1. event loop进入了poll阶段, **未设定timer** poll queue不为空:event loop将同步的执行queue里的callback,直到清空或执行的callback到达系统上限 poll queue为空 如果有设定`setImmediate() callback`, event loop将结束poll阶段进入check阶段,并执行check queue (check queue是 setImmediate设定的) 如果代码没有设定setImmediate() callback,event loop将阻塞在该阶段等待callbacks加入poll queue 2. event loop进入了 poll阶段, **设定了timer** 如果poll进入空闲状态,event loop将检查timers,如果有1个或多个timers时间时间已经到达,event loop将回到 timers 阶段执行timers queue 这里的逻辑比较复杂,流程可以借助下面的图进行理解: ![](https://ws1.sinaimg.cn/large/006tKfTcgy1g0anodoa11j311i0h0t8w.jpg) 复制代码
check 阶段
一旦poll队列闲置下来或者是代码被`setImmediate`调度,EL会马上进入check phase 复制代码
close callbacks
关闭I/O的动作,比如文件描述符的关闭,连接断开等 如果socket突然中断,close事件会在这个阶段被触发 复制代码
同步的任务执行完,先执行完全部的 process.nextTick()
和 全部的微任务队列,然后执行每一个阶段,每个阶段执行完毕后,
注意点
setTimeout 和 setImmediate
-
调用阶段不一样
-
不同的io中,执行顺序不保证
二者非常相似,区别主要在于调用时机不同。
setImmediate
设计在poll阶段完成时执行,即check段;
setTimeout
设计在poll阶段为空闲时,且设定时间到达后执行,但它在timer阶段执行
setTimeout(function timeout () { console.log('timeout'); },0); setImmediate(function immediate () { console.log('immediate'); }); 复制代码
对于以上代码来说,setTimeout 可能执行在前,也可能执行在后。 首先 setTimeout(fn, 0) === setTimeout(fn, 1)
,这是由源码决定的。
如果在准备时候花费了大于 1ms 的时间,那么在 timer 阶段就会直接执行 setTimeout 回调。 如果准备时间花费小于 1ms,那么就是 setImmediate 回调先执行了。
也就是说,进入事件循环也是需要成本的。有可能进入event loop 时, setTimeout(fn, 1)
还在等待timer中,并没有被推入到 time 事件队列
,而 setImmediate
方法已经被推入到了 check事件队列
中了。那么event_loop 按照 time
、 i/o
、 poll
、 check
、 close
顺序执行,先执行 immediate
任务。
也有可能,进入event loop 时, setTimeout(fn, 1)
已经结束了等待,被推到了 time
阶段的队列中,如下图所示,则先执行了 timeout
方法。
所以, setTimeout
setImmediate
哪个先执行,这主要取决于,进入event loop 花了多长时间。
但当二者在异步i/o callback内部调用时,总是先执行setImmediate,再执行setTimeout
const fs = require('fs') fs.readFile(__filename, () => { setTimeout(() => { console.log('timeout'); }, 0) setImmediate(() => { console.log('immediate') }) }) 复制代码
在上述代码中,setImmediate 永远先执行。因为两个代码写在 IO 回调中,IO 回调是在 poll 阶段执行,当回调执行完毕后队列为空,发现存在 setImmediate 回调,所以就直接跳转到 check 阶段去执行回调了。
process.nextTick() 和 setImmediate()
官方推荐使用 setImmediate()
,因为更容易推理,也兼容更多的环境,例如浏览器环境
process.nextTick()
在当前循环阶段结束之前触发
setImmediate()
在下一个事件循环中的check阶段触发
通过 process.nextTick()
触发的回调也会在进入下一阶段前被执行结束,这会允许用户递归调用 process.nextTick()
造成I/O被榨干,使EL不能进入poll阶段
因此node作者推荐我们尽量使用setImmediate,因为它只在check阶段执行,不至于导致其他异步回调无法被执行到
例子
console.log('start') setTimeout(() => { console.log('timer1') Promise.resolve().then(function() { console.log('promise1') }) }, 0) setTimeout(() => { console.log('timer2') Promise.resolve().then(function() { console.log('promise2') }) }, 0) Promise.resolve().then(function() { console.log('promise3') }) console.log('end') 复制代码
注意:主栈执行完了之后,会先清空 process.nextick() 队列和microtask队列中的任务,然后按照每一个阶段来执行先处理异步事件的回调,比如网络I/O,比如文件读取I/O。当这些I/O动作都结束的时候,在这个阶段会触发它们的
下一期,我们再见~
以上所述就是小编给大家介绍的《成为自信的node.js 开发者(二)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 成为自信的node.js开发者(一)
- 我如何零基础转行成为一个自信的前端
- 我如何零基础转行成为一个自信的前端
- VMware自信满满击败华尔街盈利预测 全面转型成果显著
- 让开发者专注于应用开发,OpenCenter 3.0 开发者预览版发布
- 让开发者专注于应用开发,OpenCenter 3.0 开发者预览版发布
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
程序员的自我修养
俞甲子、石凡、潘爱民 / 电子工业出版社 / 2009-4 / 65.00
这本书主要介绍系统软件的运行机制和原理,涉及在Windows和Linux两个系统平台上,一个应用程序在编译、链接和运行时刻所发生的各种事项,包括:代码指令是如何保存的,库文件如何与应用程序代码静态链接,应用程序如何被装载到内存中并开始运行,动态链接如何实现,C/C++运行库的工作原理,以及操作系统提供的系统服务是如何被调用的。每个技术专题都配备了大量图、表和代码实例,力求将复杂的机制以简洁的形式表......一起来看看 《程序员的自我修养》 这本书的介绍吧!