内容简介:RabbitMQ 是比较有代表性的,因为是RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式。单机模式,就是 Demo 级别的,一般就是你本地启动了玩玩儿的:smile:,没人生产用单机模式。
RabbitMQ 是比较有代表性的,因为是 基于主从 (非分布式)做高可用性的,我们就以 RabbitMQ 为例子讲解第一种 MQ 的高可用性怎么实现。
RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式。
单机模式
单机模式,就是 Demo 级别的,一般就是你本地启动了玩玩儿的:smile:,没人生产用单机模式。
普通集群模式(无高可用性)
普通集群模式,意思就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。你 创建的 queue,只会放在一个 RabbitMQ 实例上 ,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。
这种方式确实很麻烦,也不怎么好, 没做到所谓的分布式 ,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个 queue 所在实例消费数据,前者有 数据拉取的开销 ,后者导致 单实例性能瓶颈 。
而且如果那个放 queue 的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你 开启了消息持久化 ,让 RabbitMQ 落地存储消息的话, 消息不一定会丢 ,得等这个实例恢复了,然后才可以继续从这个 queue 拉取数据。
所以这个事儿就比较尴尬了,这就 没有什么所谓的高可用性 , 这方案主要是提高吞吐量的 ,就是说让集群中多个节点来服务某个 queue 的读写操作。
镜像集群模式(高可用性)
这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,你创建的 queue,无论元数据还是 queue 里的消息都会 存在于多个实例上 ,就是说,每个 RabbitMQ 节点都有这个 queue 的一个 完整镜像 ,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把 消息同步 到多个实例的 queue 上。
那么 如何开启这个镜像集群模式 呢?其实很简单,RabbitMQ 有很好的管理控制台,就是在后台新增一个策略,这个策略是 镜像集群模式的策略 ,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
这样的话,好处在于,你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue 的完整数据,别的 consumer 都可以到其它节点上去消费数据。坏处在于,第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!第二,这么玩儿,不是分布式的,就 没有扩展性可言 了,如果某个 queue 负载很重,你加机器,新增的机器也包含了这个 queue 的所有数据,并 没有办法线性扩展 你的 queue。你想,如果这个 queue 的数据量很大,大到这个机器上的容量无法容纳了,此时该怎么办呢?
Kafka 的高可用性
Kafka 一个最基本的架构认识:由多个 broker 组成,每个 broker 是一个节点;你创建一个 topic,这个 topic 可以划分为多个 partition,每个 partition 可以存在于不同的 broker 上,每个 partition 就放一部分数据。
这就是 天然的分布式消息队列 ,就是说一个 topic 的数据,是 分散放在多个机器上的,每个机器就放一部分数据 。
实际上 RabbmitMQ 之类的,并不是分布式消息队列,它就是传统的消息队列,只不过提供了一些集群、HA(High Availability, 高可用性) 的机制而已,因为无论怎么玩儿,RabbitMQ 一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。
Kafka 0.8 以前,是没有 HA 机制的,就是任何一个 broker 宕机了,那个 broker 上的 partition 就废了,没法写也没法读,没有什么高可用性可言。
比如说,我们假设创建了一个 topic,指定其 partition 数量是 3 个,分别在三台机器上。但是,如果第二台机器宕机了,会导致这个 topic 的 1/3 的数据就丢了,因此这个是做不到高可用的。
Kafka 0.8 以后,提供了 HA 机制,就是 replica(复制品) 副本机制。每个 partition 的数据都会同步到其它机器上,形成自己的多个 replica 副本。所有 replica 会选举一个 leader 出来,那么生产和消费都跟这个 leader 打交道,然后其他 replica 就是 follower。写的时候,leader 会负责把数据同步到所有 follower 上去,读的时候就直接读 leader 上的数据即可。只能读写 leader?很简单, 要是你可以随意读写每个 follower,那么就要 care 数据一致性的问题 ,系统复杂度太高,很容易出问题。Kafka 会均匀地将一个 partition 的所有 replica 分布在不同的机器上,这样才可以提高容错性。
这么搞,就有所谓的 高可用性 了,因为如果某个 broker 宕机了,没事儿,那个 broker上面的 partition 在其他机器上都有副本的,如果这上面有某个 partition 的 leader,那么此时会从 follower 中 重新选举 一个新的 leader 出来,大家继续读写那个新的 leader 即可。这就有所谓的高可用性了。
写数据的时候,生产者就写 leader,然后 leader 将数据落地写本地磁盘,接着其他 follower 自己主动从 leader 来 pull 数据。一旦所有 follower 同步好数据了,就会发送 ack 给 leader,leader 收到所有 follower 的 ack 之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)
消费的时候,只会从 leader 去读,但是只有当一个消息已经被所有 follower 都同步成功返回 ack 的时候,这个消息才会被消费者读到。
本文原创地址: https://jsbintask.cn/2019/01/28/interview/interview-middle-highavailable/ ,转载请注明出处。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 消息中间件RocketMQ消息发送
- 消息中间件面试题:消息丢失怎么办?
- 消息中间件面试题:如何保证消息的顺序性
- 刨根问底,Kafka 消息中间件到底会不会丢消息
- 消息中间件面试题:如何保证消息不被重复消费
- 【真实生产案例】消息中间件如何处理消费失败的消息?
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Reversing
艾拉姆(Eilam,E.) / 韩琪、杨艳、王玉英、李娜 / 电子工业出版社 / 2007-9 / 79.00元
本书描述的是在逆向与反逆向之间展开的一场旷日持久的拉锯战。作者Eldad Eilam以一个解说人的身份为我们详尽地评述了双方使用的每一招每一式的优点与不足。 书中包含的主要内容有:操作系统的逆向工程;.NET平台上的逆向工程;逆向未公开的文件格式和网络协议;逆向工程的合法性问题;拷贝保护和数字版权管理技术的逆向工程;防止别人对你的代码实施逆向工程的各种技术;恶意程序的逆向工程;反编译器的基本......一起来看看 《Reversing》 这本书的介绍吧!