消息中间件面试题:消息丢失怎么办?

栏目: 后端 · 发布时间: 5年前

内容简介:如何保证消息的可靠性传输?或者说,如何处理消息丢失的问题?如果说你这个是用 MQ 来传递非常核心的消息,比如说计费、扣费的一些消息,那必须确保这个 MQ 传递过程中数据的丢失问题,可能出现在生产者、MQ、消费者中,咱们从 RabbitMQ 和 Kafka 分别来分析一下吧。

如何保证消息的可靠性传输?或者说,如何处理消息丢失的问题?

如果说你这个是用 MQ 来传递非常核心的消息,比如说计费、扣费的一些消息,那必须确保这个 MQ 传递过程中 绝对不会把计费消息给弄丢

面试题剖析

数据的丢失问题,可能出现在生产者、MQ、消费者中,咱们从 RabbitMQ 和 Kafka 分别来分析一下吧。

RabbitMQ

消息中间件面试题:消息丢失怎么办?

生产者弄丢了数据

生产者将数据发送到 RabbitMQ 的时候,可能数据就在半路给搞丢了,因为网络问题啥的,都有可能。

此时可以选择用 RabbitMQ 提供的事务功能,就是生产者 发送数据之前 开启 RabbitMQ 事务 channel.txSelect ,然后发送消息,如果消息没有成功被 RabbitMQ 接收到,那么生产者会收到异常报错,此时就可以回滚事务 channel.txRollback ,然后重试发送消息;如果收到了消息,那么可以提交事务 channel.txCommit

// 开启事务
channel.txSelect
try {
    // 这里发送消息
} catch (Exception e) {
    channel.txRollback

    // 这里再次重发这条消息
}

// 提交事务
channel.txCommit

但是问题是,RabbitMQ 事务机制(同步)一搞,基本上 吞吐量会下来,因为太耗性能

所以一般来说,如果你要确保说写 RabbitMQ 的消息别丢,可以开启 confirm 模式,在生产者那里设置开启 confirm 模式之后,你每次写的消息都会分配一个唯一的 id,然后如果写入了 RabbitMQ 中,RabbitMQ 会给你回传一个 ack 消息,告诉你说这个消息 ok 了。如果 RabbitMQ 没能处理这个消息,会回调你的一个 nack 接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息 id 的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。

事务机制和 cnofirm 机制最大的不同在于, 事务机制是同步的 ,你提交一个事务之后会 阻塞 在那儿,但是 confirm 机制是 异步 的,你发送个消息之后就可以发送下一个消息,然后那个消息 RabbitMQ 接收了之后会异步回调你的一个接口通知你这个消息接收到了。

所以一般在生产者这块 避免数据丢失 ,都是用 confirm 机制的。

RabbitMQ 弄丢了数据

就是 RabbitMQ 自己弄丢了数据,这个你必须 开启 RabbitMQ 的持久化 ,就是消息写入之后会持久化到磁盘,哪怕是 RabbitMQ 自己挂了, 恢复之后会自动读取之前存储的数据 ,一般数据不会丢。除非极其罕见的是,RabbitMQ 还没持久化,自己就挂了, 可能导致少量数据丢失 ,但是这个概率较小。

设置持久化有 两个步骤

  • 创建 queue 的时候将其设置为持久化
    这样就可以保证 RabbitMQ 持久化 queue 的元数据,但是它是不会持久化 queue 里的数据的。
  • 第二个是发送消息的时候将消息的 deliveryMode 设置为 2
    就是将消息设置为持久化的,此时 RabbitMQ 就会将消息持久化到磁盘上去。

必须要同时设置这两个持久化才行,RabbitMQ 哪怕是挂了,再次重启,也会从磁盘上重启恢复 queue,恢复这个 queue 里的数据。

注意,哪怕是你给 RabbitMQ 开启了持久化机制,也有一种可能,就是这个消息写到了 RabbitMQ 中,但是还没来得及持久化到磁盘上,结果不巧,此时 RabbitMQ 挂了,就会导致内存里的一点点数据丢失。

所以,持久化可以跟生产者那边的 confirm 机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者 ack 了,所以哪怕是在持久化到磁盘之前,RabbitMQ 挂了,数据丢了,生产者收不到 ack ,你也是可以自己重发的。

消费端弄丢了数据

RabbitMQ 如果丢失了数据,主要是因为你消费的时候, 刚消费到,还没处理,结果进程挂了 ,比如重启了,那么就尴尬了,RabbitMQ 认为你都消费了,这数据就丢了。

这个时候得用 RabbitMQ 提供的 ack 机制,简单来说,就是你必须关闭 RabbitMQ 的自动 ack ,可以通过一个 api 来调用就行,然后每次你自己代码里确保处理完的时候,再在程序里 ack 一把。这样的话,如果你还没处理完,不就没有 ack 了?那 RabbitMQ 就认为你还没处理完,这个时候 RabbitMQ 会把这个消费分配给别的 consumer 去处理,消息是不会丢的。

消息中间件面试题:消息丢失怎么办?

Kafka

消费端弄丢了数据

唯一可能导致消费者弄丢数据的情况,就是说,你消费到了这个消息,然后消费者那边 自动提交了 offset ,让 Kafka 以为你已经消费好了这个消息,但其实你才刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯。

这不是跟 RabbitMQ 差不多吗,大家都知道 Kafka 会自动提交 offset,那么只要 关闭自动提交 offset,在处理完之后自己手动提交 offset,就可以保证数据不会丢。但是此时确实还是 可能会有重复消费 ,比如你刚处理完,还没提交 offset,结果自己挂了,此时肯定会重复消费一次,自己保证幂等性就好了。

生产环境碰到的一个问题,就是说我们的 Kafka 消费者消费到了数据之后是写到一个内存的 queue 里先缓冲一下,结果有的时候,你刚把消息写入内存 queue,然后消费者会自动提交 offset。然后此时我们重启了系统,就会导致内存 queue 里还没来得及处理的数据就丢失了。

Kafka 弄丢了数据

这块比较常见的一个场景,就是 Kafka 某个 broker 宕机,然后重新选举 partition 的 leader。大家想想,要是此时其他的 follower 刚好还有些数据没有同步,结果此时 leader 挂了,然后选举某个 follower 成 leader 之后,不就少了一些数据?这就丢了一些数据啊。

生产环境也遇到过,我们也是,之前 Kafka 的 leader 机器宕机了,将 follower 切换为 leader 之后,就会发现说这个数据就丢了。

所以此时一般是要求起码设置如下 4 个参数:

  • 给 topic 设置 replication.factor 参数:这个值必须大于 1,要求每个 partition 必须有至少 2 个副本。
  • 在 Kafka 服务端设置 min.insync.replicas 参数:这个值必须大于 1,这个是要求一个 leader 至少感知到有至少一个 follower 还跟自己保持联系,没掉队,这样才能确保 leader 挂了还有一个 follower 吧。
  • 在 producer 端设置 acks=all :这个是要求每条数据,必须是 写入所有 replica 之后,才能认为是写成功了
  • 在 producer 端设置 retries=MAX (很大很大很大的一个值,无限次重试的意思):这个是 要求一旦写入失败,就无限重试 ,卡在这里了。

我们生产环境就是按照上述要求配置的,这样配置之后,至少在 Kafka broker 端就可以保证在 leader 所在 broker 发生故障,进行 leader 切换时,数据不会丢失。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

浪潮之巅(下册)

浪潮之巅(下册)

吴军 / 人民邮电出版社 / 2013-6 / 45.00元

《浪潮之巅(第2版)(下册)》不是一本科技产业发展历史集,而是在这个数字时代,一本IT人非读不可,而非IT人也应该阅读的作品。一个企业的发展与崛起,绝非只是空有领导强人即可达成。任何的决策、同期的商业环境,都在都影响着企业的兴衰。《浪潮之巅》不只是一本历史书,除了讲述科技顶尖企业的发展规律,对于华尔街如何左右科技公司,以及金融风暴对科技产业的冲击,也多有着墨。此外,《浪潮之巅》也着力讲述很多尚在普......一起来看看 《浪潮之巅(下册)》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具