Promise总结

栏目: JavaScript · 发布时间: 5年前

内容简介:作为一个前端开发,使用了Promise一年多了,一直以来都停留在API的调用阶段,没有很好的去深入。刚好最近阅读了V8团队的一篇Promise是社区中对于异步的一种解决方案,相对于回调函数和事件机制更直观和容易理解。ES6 将其写进了语言标准,统一了用法,提供了原生的Promise对象。

更好的阅度体验

  • 前言
  • API
  • Promise特点
  • 状态跟随
  • V8中的async await和Promise
  • 实现一个Promise
  • 参考

前言

作为一个前端开发,使用了Promise一年多了,一直以来都停留在API的调用阶段,没有很好的去深入。刚好最近阅读了V8团队的一篇 如何实现更快的async await ,借着这个机会整理了Promise的相关理解。文中如有错误,请轻喷~

API

Promise是社区中对于异步的一种解决方案,相对于回调函数和事件机制更直观和容易理解。ES6 将其写进了语言标准,统一了用法,提供了原生的Promise对象。

这里只对API的一些特点做记录,如果需要详细教程,推荐阮老师的 Promise对象一文

new Promise--创建一个promise实例

Promise.prototype.then(resolve, reject)--then方法返回一个新的Promise实例

Promise.prototype.catch(error)

--.then(null, rejection)或.then(undefined, rejection)的别名,用于指定发生错误时的回调函数。

--错误会一直传递,直到被catch,如果没有catch,则没有任何反应

--catch返回一个新的Promise实例

Promise.prototype.finally()

--指定不管 Promise 对象最后状态如何,都会执行的操作。

--实现如下:

Promise.prototype.finally = function (callback) {
  let P = this.constructor;
  return this.then(
    value  => P.resolve(callback()).then(() => value),
    reason => P.resolve(callback()).then(() => { throw reason })
  );
};
Promise.all([promise Array])

--将多个 Promise 实例,包装成一个新的 Promise 实例

--所有子promise执行完成后,才执行all的resolve,参数为所有子promise返回的数组

--某个子promise出错时,执行all的reject,参数为第一个被reject的实例的返回值

--某个子promise自己catch时,不会传递reject给all,因为catch重新返回一个promise实例

Promise.race([promise Array])

--将多个 Promise 实例,包装成一个新的 Promise 实例。

--子promise有一个实例率先改变状态,race的状态就跟着改变。那个率先改变的 Promise 实例的返回值,就传递给race的回调函数。

Promise.resolve()

--将现有对象转为 Promise 对象

--参数是promise实例, 原封不动的返回

--参数是一个thenable对象 将这个对象转为 Promise 对象,状态为resolved

--参数是一个原始值 返回一个新的 Promise 对象,状态为resolved

--不带有任何参数 返回一个resolved状态的 Promise 对象。

--等价于如下代码

Promise.resolve('foo')
// 等价于
new Promise(resolve => resolve('foo'))
Promise.reject()

--返回一个新的 Promise 实例,该实例的状态为rejected

--Promise.reject()方法的参数,会原封不动地作为reject的理由,变成后续方法的参数。

Promise特点

很多文章都是把resolve当成fulfilled,本文也是,但本文还有另外一个resolved,指的是该Promise已经被处理,注意两者的区别
1. 对象具有三个状态,分别是pending(进行中)、fulfilled(resolve)(已成功)、reject(已失败),并且对象的状态不受外界改变,只能从pending到fulfilled或者pending到reject。  

2. 一旦状态被改变,就不会再变,任何时候都能得到这个结果,与事件回调不同,事件回调在事件过去后无法再调用函数。  

3. 一个promise一旦resolved,再次resolve/reject将失效。即只能resolved一次。  

4. 值穿透,传给then或者catch的参数为非函数时,会发生穿透(下面有示例代码)  

5. 无法取消,Promise一旦运行,无法取消。  

6. 如果不设置回调函数,Promise内部抛出的错误,不会反应到外部  

7. 处于pending时,无法感知promise的状态(刚刚开始还是即将完成)。

值穿透代码:

new Promise(resolve=>resolve(8))
  .then()
  .then()
  .then(function foo(value) {
    console.log(value)  // 8
  })

状态追随

状态追随的概念和下面的v8处理asyac await相关联

状态跟随就是指将一个promise(代指A)当成另外一个promise(代指B)的resolve参数,即B的状态会追随A。

如下代码所示:

const promiseA = new Promise((resolve) => {
  setTimeout(() => {
    resolve('ccc')
  }, 3000)
})
const promiseB = new Promise(res => {
  res(promiseA)
})
promiseB.then((arg) => {
  console.log(arg) // print 'ccc' after 3000ms
})

按理说,promiseB应该是已经处于resolve的状态, 但是依然要3000ms后才打印出我们想要的值, 这难免让人困惑

在ES的标准文档中有这么一句话可以帮助我们理解:

A resolved promise may be pending, fulfilled or rejected.

就是说一个已经处理的promise,他的状态有可能是pending, fulfilled 或者 rejected。 这与我们前面学的不一样啊, resolved了的promise不应该是处于结果状态吗?这确实有点反直觉,结合上面的例子看, 当处于状态跟随时,即使promiseB立即被resolved了,但是因为他追随了promiseA的状态,而A的状态则是pending,所以才说处于resolved的promiseB的状态是pending。

再看另外一个例子:

const promiseA = new Promise((resolve) => {
  setTimeout(() => {
    resolve('ccc')
  }, 3000)
})
const promiseB = new Promise(res => {
  setTimeout(() => {
    res(promiseA)
  }, 5000)
})
promiseB.then((arg) => {
  console.log(arg) // print 'ccc' after 5000ms
})

其实理解了上面的话,这一段的代码也比较容易理解,只是因为自己之前进了牛角尖,所以特意记录下来:

  1. 3s后 promiseA状态变成resolve
  2. 5s后 promiseB被resolved, 追随promiseA的状态
  3. 因为promiseA的状态为resolve, 所以打印 ccc

V8中的async await和Promise

在进入正题之前,我们可以先看下面这段代码:

const p = Promise.resolve();

(async () => {
  await p;
  console.log("after:await");
})();

p.then(() => {
  console.log("tick:a");
}).then(() => {
  console.log("tick:b");
});

V8团队的博客中, 说到这段代码的运行结果有两种:

Node8(错误的):

tick a  
tick b  
after: await

Node10(正确的):

after await  
tick a  
tick b

ok, 问题来了, 为啥是这个样子?

先从V8对于await的处理说起, 这里引用一张官方博客的图来说明Node8 await的伪代码:

Node8 await

Promise总结

对于上面的例子代码翻译过来就(该代码引用自V8是 怎么实现更快的async await )是:

const p = Promise.resolve();

(() => {
  const implicit_promise = new Promise(resolve => {
    const promise = new Promise(res => res(p));
    promise.then(() => {
      console.log("after:await");
      resolve();
    });
  });

  return implicit_promise;
})();

p.then(() => {
  console.log("tick:a");
}).then(() => {
  console.log("tick:b");
});

很明显,内部那一句 new Promise(res => res(p)); 代码就是一个状态跟随,即promise追随p的状态,那这跟上面的结果又有什么关系?

在继续深入之前, 我们还需要了解一些概念:

task和microtask

JavaScript 中有 task 和 microtask 的概念。 Task 处理 I/O 和计时器等事件,一次执行一个。 Microtask 为 async/await 和 promise 实现延迟执行,并在每个任务结束时执行。 总是等到 microtasks 队列被清空,事件循环执行才会返回。

如官方提供的一张图:

Promise总结

EnqueueJob、PromiseResolveThenableJob和PromiseReactionJob

EnquequeJob: 存放两种类型的任务, 即PromiseResolveThenableJob和PromiseReactionJob, 并且都是属于microtask类型的任务

PromiseReactionJob: 可以通俗的理解为promise中的回调函数

PromiseResolveThenableJob(promiseToResolve, thenable, then): 创建和 promiseToResolve 关联的 resolve function 和 reject function。以 then 为调用函数,thenable 为this,resolve function和reject function 为参数调用返回。(下面利用代码讲解)

状态跟随的内部

再以之前的代码为例子

const promiseA = new Promise((resolve) => {
  resolve('ccc')
})
const promiseB = new Promise(res => {
  res(promiseA)
})

当promiseB被resolved的时候, 也就是将一个promise(代指A)当成另外一个promise(代指B)的resolve参数,会向EnquequeJob插入一个PromiseResolveThenableJob任务,PromiseResolveThenableJob大概做了如下的事情:

() => { 
  promiseA.then(
    resolvePromiseB, 
    rejectPromiseB
  );
}

并且当resolvePromiseB执行后, promiseB的状态才变成resolve,也就是B追随A的状态

Node 8中的流程

1. p处于resolve状态,promise调用then被resolved,同时向microtask插入任务PromiseResolveThenableJob  
2. p.then被调用, 向microtask插入任务tickA  
3. 执行PromiseResolveThenableJob, 向microtask插入任务resolvePromise(如上面的promiseA.then(...))  
4. 执行tickA(即输出tick: a),返回一个promise, 向microtask插入任务tickB  
5. 因为microtask的任务还没执行完, 继续  
6. 执行resolvePromise, 此时promise终于变成resolve, 向microtask插入任务'after await'  
7. 执行tickB(即输出tick: b)  
8. 执行'after await'(即输出'after await')

Node 10 await

老规矩, 先补一张伪代码图:

Promise总结

翻译过来就是酱紫:

const p = Promise.resolve();

(() => {
  const implicit_promise = new Promise(resolve => {
    const promise = Promise.resolve(p)
    promise.then(() => {
      console.log("after:await");
      resolve();
    });
  });

  return implicit_promise;
})();

p.then(() => {
  console.log("tick:a");
}).then(() => {
  console.log("tick:b");
});

因为p是一个promise, 然后Promise. resolve会直接将P返回 ,也就是

p === promise // true

因为直接返回了p,所以省去了中间两个microtask任务,并且输出的顺序也变得正常,也就是V8所说的更快的async await

实现一个Promise

先实现一个基础的函数

function Promise(cb) {
  const that = this
  that.value = undefined // Promise的值
  that.status = 'pending' // Promise的状态
  that.resolveArray = [] // resolve函数集合
  that.rejectArray = []  // reject函数集合

  function resolve(value) {
    if (value instanceof Promise) {
      return value.then(resolve, reject)
    }
    setTimeout(function() {
      if (that.status === 'pending') { // 处于pending状态 循环调用
        that.value = value
        that.status = 'resolve'
        for(let i = 0; i < that.resolveArray.length; i++) {
          that.resolveArray[i](value)
        }
      }
    })
  }
  function reject(reason) {
    if (reason instanceof Promise) {
      return reason.then(resolve, reject)
    }
    setTimeout(function() {
      if (that.status === 'pending') { // 处于pending状态 循环调用
        that.value = reason
        that.status = 'reject'
        for(let i = 0; i < that.rejectArray.length; i++) {
          that.rejectArray[i](reason)
        }
      }
    })
  }

  try {
    cb(resolve, reject)
  } catch (e) {
    reject(e)
  }
}
Promise.prototype.then = function(onResolve, onReject) {
  var that = this
  var promise2 // 返回的Promise

  onResolve = typeof onResolve === 'function' ? onResolve : function(v) { return v }  //如果不是函数 则处理穿透值
  onReject = typeof onReject === 'function' ? onReject : function(v) { return v } //如果不是函数 则处理穿透值

  if (that.status === 'resolve') {
    return promise2 = new Promise(function(resolve, reject) {
      setTimeout(function() {
        try {
          const x = onResolve(that.value)
          if (x instanceof Promise) { // 如果onResolved的返回值是一个Promise对象,直接取它的结果做为promise2的结果
            x.then(resolve, reject)
          } else {
            resolve(x)
          }
        } catch (e) {
          reject(e)
        }
      })
    })
  }

  if (that.status === 'reject') {
    return promise2 = new Promise(function(resolve, reject) {
      setTimeout(function() {
        try {
          const x = onResolve(that.value)
          if (x instanceof Promise) { // 如果onResolved的返回值是一个Promise对象,直接取它的结果做为promise2的结果
            x.then(resolve, reject)
          } else {
            reject(x)
          }
        } catch (e) {
          reject(e)
        }
      })
    })
  }

  if (that.status === 'pending') {
    return promise2 = new Promise(function(resolve, reject) {
      that.resolveArray.push(function(value) {
        try {
          var x = onResolve(value)
          if (x instanceof Promise) {
            x.then(resolve, reject)
          }
        } catch (e) {
          reject(e)
        }
      })
      that.rejectArray.push(function(reason) {
        try {
          var x = onReject(reason)
          if (x instanceof Promise) {
            x.then(resolve, reject)
          }
        } catch (e) {
          reject(e)
        }
      })
    })
  }
}
Promise.prototype.catch = function(onReject) {
  return this.then(null, onReject)
}

参考

v8是怎么实现更快的 await ?深入理解 await 的运行机制 V8中更快的异步函数和promise 剖析Promise内部结构,一步一步实现一个完整的、能通过所有Test case的Promise类 PromiseA+ ES6入门 深入Promise


以上所述就是小编给大家介绍的《Promise总结》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Web前端黑客技术揭秘

Web前端黑客技术揭秘

钟晨鸣、徐少培 / 电子工业出版社 / 2013-1 / 59.00元

Web前端的黑客攻防技术是一门非常新颖且有趣的黑客技术,主要包含Web前端安全的跨站脚本(XSS)、跨站请求伪造(CSRF)、界面操作劫持这三大类,涉及的知识点涵盖信任与信任关系、Cookie安全、Flash安全、DOM渲染、字符集、跨域、原生态攻击、高级钓鱼、蠕虫思想等,这些都是研究前端安全的人必备的知识点。本书作者深入剖析了许多经典的攻防技巧,并给出了许多独到的安全见解。 本书适合前端工......一起来看看 《Web前端黑客技术揭秘》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

随机密码生成器
随机密码生成器

多种字符组合密码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器