内容简介:flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/api/table.scalaflink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/plan/logical/operators.scalacalcite-core-1.18.0-sources.jar!/org/apache/calcite/rex/RexNode.java
flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/api/table.scala
class Table( private[flink] val tableEnv: TableEnvironment, private[flink] val logicalPlan: LogicalNode) { //...... def where(predicate: String): Table = { filter(predicate) } def where(predicate: Expression): Table = { filter(predicate) } def filter(predicate: String): Table = { val predicateExpr = ExpressionParser.parseExpression(predicate) filter(predicateExpr) } def filter(predicate: Expression): Table = { new Table(tableEnv, Filter(predicate, logicalPlan).validate(tableEnv)) } //...... } 复制代码
- Table的where及filter操作均有两中方法,一种是String参数,一种是Expression参数;而where方法内部是调用filter方法;filter方法使用Filter(predicate, logicalPlan).validate(tableEnv)创建了新的Table;String参数最后是通过ExpressionParser.parseExpression方法转换为Expression类型
Filter
flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/plan/logical/operators.scala
case class Filter(condition: Expression, child: LogicalNode) extends UnaryNode { override def output: Seq[Attribute] = child.output override protected[logical] def construct(relBuilder: RelBuilder): RelBuilder = { child.construct(relBuilder) relBuilder.filter(condition.toRexNode(relBuilder)) } override def validate(tableEnv: TableEnvironment): LogicalNode = { val resolvedFilter = super.validate(tableEnv).asInstanceOf[Filter] if (resolvedFilter.condition.resultType != BOOLEAN_TYPE_INFO) { failValidation(s"Filter operator requires a boolean expression as input," + s" but ${resolvedFilter.condition} is of type ${resolvedFilter.condition.resultType}") } resolvedFilter } } 复制代码
- Filter对象继承了UnaryNode,它覆盖了output、construct、validate等方法;construct方法先通过Expression.toRexNode将flink的Expression转换为Apache Calcite的RexNode,然后再执行Apache Calcite的RelBuilder的filter方法
RexNode
calcite-core-1.18.0-sources.jar!/org/apache/calcite/rex/RexNode.java
public abstract class RexNode { //~ Instance fields -------------------------------------------------------- // Effectively final. Set in each sub-class constructor, and never re-set. protected String digest; //~ Methods ---------------------------------------------------------------- public abstract RelDataType getType(); public boolean isAlwaysTrue() { return false; } public boolean isAlwaysFalse() { return false; } public boolean isA(SqlKind kind) { return getKind() == kind; } public boolean isA(Collection<SqlKind> kinds) { return getKind().belongsTo(kinds); } public SqlKind getKind() { return SqlKind.OTHER; } public String toString() { return digest; } public abstract <R> R accept(RexVisitor<R> visitor); public abstract <R, P> R accept(RexBiVisitor<R, P> visitor, P arg); @Override public abstract boolean equals(Object obj); @Override public abstract int hashCode(); } 复制代码
- RexNode是Row expression,可以通过RexBuilder来创建;它有很多子类,比如RexCall、RexVariable、RexFieldAccess等
RelBuilder.filter
calcite-core-1.18.0-sources.jar!/org/apache/calcite/tools/RelBuilder.java
public class RelBuilder { protected final RelOptCluster cluster; protected final RelOptSchema relOptSchema; private final RelFactories.FilterFactory filterFactory; private final RelFactories.ProjectFactory projectFactory; private final RelFactories.AggregateFactory aggregateFactory; private final RelFactories.SortFactory sortFactory; private final RelFactories.ExchangeFactory exchangeFactory; private final RelFactories.SortExchangeFactory sortExchangeFactory; private final RelFactories.SetOpFactory setOpFactory; private final RelFactories.JoinFactory joinFactory; private final RelFactories.SemiJoinFactory semiJoinFactory; private final RelFactories.CorrelateFactory correlateFactory; private final RelFactories.ValuesFactory valuesFactory; private final RelFactories.TableScanFactory scanFactory; private final RelFactories.MatchFactory matchFactory; private final Deque<Frame> stack = new ArrayDeque<>(); private final boolean simplify; private final RexSimplify simplifier; protected RelBuilder(Context context, RelOptCluster cluster, RelOptSchema relOptSchema) { this.cluster = cluster; this.relOptSchema = relOptSchema; if (context == null) { context = Contexts.EMPTY_CONTEXT; } this.simplify = Hook.REL_BUILDER_SIMPLIFY.get(true); this.aggregateFactory = Util.first(context.unwrap(RelFactories.AggregateFactory.class), RelFactories.DEFAULT_AGGREGATE_FACTORY); this.filterFactory = Util.first(context.unwrap(RelFactories.FilterFactory.class), RelFactories.DEFAULT_FILTER_FACTORY); this.projectFactory = Util.first(context.unwrap(RelFactories.ProjectFactory.class), RelFactories.DEFAULT_PROJECT_FACTORY); this.sortFactory = Util.first(context.unwrap(RelFactories.SortFactory.class), RelFactories.DEFAULT_SORT_FACTORY); this.exchangeFactory = Util.first(context.unwrap(RelFactories.ExchangeFactory.class), RelFactories.DEFAULT_EXCHANGE_FACTORY); this.sortExchangeFactory = Util.first(context.unwrap(RelFactories.SortExchangeFactory.class), RelFactories.DEFAULT_SORT_EXCHANGE_FACTORY); this.setOpFactory = Util.first(context.unwrap(RelFactories.SetOpFactory.class), RelFactories.DEFAULT_SET_OP_FACTORY); this.joinFactory = Util.first(context.unwrap(RelFactories.JoinFactory.class), RelFactories.DEFAULT_JOIN_FACTORY); this.semiJoinFactory = Util.first(context.unwrap(RelFactories.SemiJoinFactory.class), RelFactories.DEFAULT_SEMI_JOIN_FACTORY); this.correlateFactory = Util.first(context.unwrap(RelFactories.CorrelateFactory.class), RelFactories.DEFAULT_CORRELATE_FACTORY); this.valuesFactory = Util.first(context.unwrap(RelFactories.ValuesFactory.class), RelFactories.DEFAULT_VALUES_FACTORY); this.scanFactory = Util.first(context.unwrap(RelFactories.TableScanFactory.class), RelFactories.DEFAULT_TABLE_SCAN_FACTORY); this.matchFactory = Util.first(context.unwrap(RelFactories.MatchFactory.class), RelFactories.DEFAULT_MATCH_FACTORY); final RexExecutor executor = Util.first(context.unwrap(RexExecutor.class), Util.first(cluster.getPlanner().getExecutor(), RexUtil.EXECUTOR)); final RelOptPredicateList predicates = RelOptPredicateList.EMPTY; this.simplifier = new RexSimplify(cluster.getRexBuilder(), predicates, executor); } public RelBuilder filter(RexNode... predicates) { return filter(ImmutableList.copyOf(predicates)); } public RelBuilder filter(Iterable<? extends RexNode> predicates) { final RexNode simplifiedPredicates = simplifier.simplifyFilterPredicates(predicates); if (simplifiedPredicates == null) { return empty(); } if (!simplifiedPredicates.isAlwaysTrue()) { final Frame frame = stack.pop(); final RelNode filter = filterFactory.createFilter(frame.rel, simplifiedPredicates); stack.push(new Frame(filter, frame.fields)); } return this; } //...... } 复制代码
-
RelBuilder在构造器里头创建了RelFactories.FilterFactory,它提供了两个filter方法,一个是RexNode变长数组参数,一个是RexNode类型的Iterable参数;filter方法首先使用simplifier.simplifyFilterPredicates将RexNode类型的Iterable转为simplifiedPredicates(
RexNode
),之后只要simplifiedPredicates.isAlwaysTrue()为false,则取出deque中队首的Frame(LIFO (Last-In-First-Out) stacks
),调用filterFactory.createFilter创建RelNode构造新的Frame,然后重新放入deque的队首
Frame
calcite-core-1.18.0-sources.jar!/org/apache/calcite/tools/RelBuilder.java
private static class Frame { final RelNode rel; final ImmutableList<Field> fields; private Frame(RelNode rel, ImmutableList<Field> fields) { this.rel = rel; this.fields = fields; } private Frame(RelNode rel) { String tableAlias = deriveAlias(rel); ImmutableList.Builder<Field> builder = ImmutableList.builder(); ImmutableSet<String> aliases = tableAlias == null ? ImmutableSet.of() : ImmutableSet.of(tableAlias); for (RelDataTypeField field : rel.getRowType().getFieldList()) { builder.add(new Field(aliases, field)); } this.rel = rel; this.fields = builder.build(); } private static String deriveAlias(RelNode rel) { if (rel instanceof TableScan) { final List<String> names = rel.getTable().getQualifiedName(); if (!names.isEmpty()) { return Util.last(names); } } return null; } List<RelDataTypeField> fields() { return Pair.right(fields); } } 复制代码
- Frame被存放于ArrayDeque中,实际是用于描述上一个操作的关系表达式以及table的别名怎么映射到row type中
RelFactories.FilterFactory.createFilter
calcite-core-1.18.0-sources.jar!/org/apache/calcite/rel/core/RelFactories.java
public interface FilterFactory { /** Creates a filter. */ RelNode createFilter(RelNode input, RexNode condition); } private static class FilterFactoryImpl implements FilterFactory { public RelNode createFilter(RelNode input, RexNode condition) { return LogicalFilter.create(input, condition); } } 复制代码
-
FilterFactoryImpl实现了FilterFactory接口,createFilter方法执行的是LogicalFilter.create(input, condition),这里input是RelNode类型(
RelNode取的是Frame的rel
),condition是RexNode类型
LogicalFilter
calcite-core-1.18.0-sources.jar!/org/apache/calcite/rel/logical/LogicalFilter.java
public final class LogicalFilter extends Filter { private final ImmutableSet<CorrelationId> variablesSet; /** Creates a LogicalFilter. */ public static LogicalFilter create(final RelNode input, RexNode condition) { return create(input, condition, ImmutableSet.of()); } /** Creates a LogicalFilter. */ public static LogicalFilter create(final RelNode input, RexNode condition, ImmutableSet<CorrelationId> variablesSet) { final RelOptCluster cluster = input.getCluster(); final RelMetadataQuery mq = cluster.getMetadataQuery(); final RelTraitSet traitSet = cluster.traitSetOf(Convention.NONE) .replaceIfs(RelCollationTraitDef.INSTANCE, () -> RelMdCollation.filter(mq, input)) .replaceIf(RelDistributionTraitDef.INSTANCE, () -> RelMdDistribution.filter(mq, input)); return new LogicalFilter(cluster, traitSet, input, condition, variablesSet); } //...... } 复制代码
- LogicalFilter继承了抽象类Filter,Filter继承了SingleRel,SingleRel继承了AbstractRelNode,AbstractRelNode实现了RelNode接口
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 聊聊jdbc的batch操作
- 聊聊flink DataStream的join操作
- 聊聊flink DataStream的split操作
- 聊聊flink DataStream的iterate操作
- 聊聊从逻辑门到操作系统的计算机
- 聊聊动态规划(2) -- 特征
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
区块链:定义未来金融与经济新格局
张健 / 机械工业出版社 / 2016-6-18 / 49.00
从构建价值互联网的角度看,区块链的出现意味着从0到1。正因如此,本书章节结构与常见的体例不同,从第0章开始。第0章从文字与货币的起源出发,通过论述人类信息传递和价值传输手段的进步,说明区块链技术诞生的必然性。第1章用深入浅出的语言讲解区块链的本质、运行原理、颠覆性潜力以及区块链技术的现状与未来;第2章宏观讲述了区块链技术带来的新产品和新机遇,包括数字货币、互联网金融、物联网,以及新一代的基础设施;......一起来看看 《区块链:定义未来金融与经济新格局》 这本书的介绍吧!