聊聊flink DataStream的join操作

栏目: 编程工具 · 发布时间: 5年前

内容简介:flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.javaflink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.javaflink-streaming-java_2.11-1.7.0-sources.jar!/org/
stream.join(otherStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(<WindowAssigner>)
    .apply(<JoinFunction>)
复制代码
  • 这里首先调用join,与另外一个stream合并,返回的是JoinedStreams,之后就可以调用JoinedStreams的where操作来构建Where对象构造条件;Where有equalTo操作可以构造EqualTo,而EqualTo有window操作可以构造WithWindow,而WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作

DataStream.join

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java

@Public
public class DataStream<T> {
	//......

	/**
	 * Creates a join operation. See {@link JoinedStreams} for an example of how the keys
	 * and window can be specified.
	 */
	public <T2> JoinedStreams<T, T2> join(DataStream<T2> otherStream) {
		return new JoinedStreams<>(this, otherStream);
	}

	//......
}
复制代码
  • DataStream提供了join方法,用于执行join操作,它返回的是JoinedStreams

JoinedStreams

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

@Public
public class JoinedStreams<T1, T2> {

	/** The first input stream. */
	private final DataStream<T1> input1;

	/** The second input stream. */
	private final DataStream<T2> input2;

	public JoinedStreams(DataStream<T1> input1, DataStream<T2> input2) {
		this.input1 = requireNonNull(input1);
		this.input2 = requireNonNull(input2);
	}

	public <KEY> Where<KEY> where(KeySelector<T1, KEY> keySelector)  {
		requireNonNull(keySelector);
		final TypeInformation<KEY> keyType = TypeExtractor.getKeySelectorTypes(keySelector, input1.getType());
		return where(keySelector, keyType);
	}

	public <KEY> Where<KEY> where(KeySelector<T1, KEY> keySelector, TypeInformation<KEY> keyType)  {
		requireNonNull(keySelector);
		requireNonNull(keyType);
		return new Where<>(input1.clean(keySelector), keyType);
	}

	//......
}
复制代码
  • JoinedStreams主要是提供where操作来构建Where对象

Where

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

@Public
	public class Where<KEY> {

		private final KeySelector<T1, KEY> keySelector1;
		private final TypeInformation<KEY> keyType;

		Where(KeySelector<T1, KEY> keySelector1, TypeInformation<KEY> keyType) {
			this.keySelector1 = keySelector1;
			this.keyType = keyType;
		}

		public EqualTo equalTo(KeySelector<T2, KEY> keySelector)  {
			requireNonNull(keySelector);
			final TypeInformation<KEY> otherKey = TypeExtractor.getKeySelectorTypes(keySelector, input2.getType());
			return equalTo(keySelector, otherKey);
		}

		public EqualTo equalTo(KeySelector<T2, KEY> keySelector, TypeInformation<KEY> keyType)  {
			requireNonNull(keySelector);
			requireNonNull(keyType);

			if (!keyType.equals(this.keyType)) {
				throw new IllegalArgumentException("The keys for the two inputs are not equal: " +
						"first key = " + this.keyType + " , second key = " + keyType);
			}

			return new EqualTo(input2.clean(keySelector));
		}

		//......

	}
复制代码
  • Where对象主要提供equalTo操作用于构建EqualTo对象

EqualTo

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

@Public
		public class EqualTo {

			private final KeySelector<T2, KEY> keySelector2;

			EqualTo(KeySelector<T2, KEY> keySelector2) {
				this.keySelector2 = requireNonNull(keySelector2);
			}

			/**
			 * Specifies the window on which the join operation works.
			 */
			@PublicEvolving
			public <W extends Window> WithWindow<T1, T2, KEY, W> window(WindowAssigner<? super TaggedUnion<T1, T2>, W> assigner) {
				return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType, assigner, null, null, null);
			}
		}
复制代码
  • EqualTo对象提供window操作用于构建WithWindow对象

WithWindow

/flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

@Public
	public static class WithWindow<T1, T2, KEY, W extends Window> {

		private final DataStream<T1> input1;
		private final DataStream<T2> input2;

		private final KeySelector<T1, KEY> keySelector1;
		private final KeySelector<T2, KEY> keySelector2;
		private final TypeInformation<KEY> keyType;

		private final WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner;

		private final Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger;

		private final Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor;

		private final Time allowedLateness;

		private CoGroupedStreams.WithWindow<T1, T2, KEY, W> coGroupedWindowedStream;

		@PublicEvolving
		protected WithWindow(DataStream<T1> input1,
				DataStream<T2> input2,
				KeySelector<T1, KEY> keySelector1,
				KeySelector<T2, KEY> keySelector2,
				TypeInformation<KEY> keyType,
				WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner,
				Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger,
				Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor,
				Time allowedLateness) {

			this.input1 = requireNonNull(input1);
			this.input2 = requireNonNull(input2);

			this.keySelector1 = requireNonNull(keySelector1);
			this.keySelector2 = requireNonNull(keySelector2);
			this.keyType = requireNonNull(keyType);

			this.windowAssigner = requireNonNull(windowAssigner);

			this.trigger = trigger;
			this.evictor = evictor;

			this.allowedLateness = allowedLateness;
		}

		@PublicEvolving
		public WithWindow<T1, T2, KEY, W> trigger(Trigger<? super TaggedUnion<T1, T2>, ? super W> newTrigger) {
			return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
					windowAssigner, newTrigger, evictor, allowedLateness);
		}

		@PublicEvolving
		public WithWindow<T1, T2, KEY, W> evictor(Evictor<? super TaggedUnion<T1, T2>, ? super W> newEvictor) {
			return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
					windowAssigner, trigger, newEvictor, allowedLateness);
		}

		@PublicEvolving
		public WithWindow<T1, T2, KEY, W> allowedLateness(Time newLateness) {
			return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
				windowAssigner, trigger, evictor, newLateness);
		}

		public <T> DataStream<T> apply(JoinFunction<T1, T2, T> function) {
			TypeInformation<T> resultType = TypeExtractor.getBinaryOperatorReturnType(
				function,
				JoinFunction.class,
				0,
				1,
				2,
				TypeExtractor.NO_INDEX,
				input1.getType(),
				input2.getType(),
				"Join",
				false);

			return apply(function, resultType);
		}

		@PublicEvolving
		@Deprecated
		public <T> SingleOutputStreamOperator<T> with(JoinFunction<T1, T2, T> function) {
			return (SingleOutputStreamOperator<T>) apply(function);
		}

		public <T> DataStream<T> apply(FlatJoinFunction<T1, T2, T> function, TypeInformation<T> resultType) {
			//clean the closure
			function = input1.getExecutionEnvironment().clean(function);

			coGroupedWindowedStream = input1.coGroup(input2)
				.where(keySelector1)
				.equalTo(keySelector2)
				.window(windowAssigner)
				.trigger(trigger)
				.evictor(evictor)
				.allowedLateness(allowedLateness);

			return coGroupedWindowedStream
					.apply(new FlatJoinCoGroupFunction<>(function), resultType);
		}

		@PublicEvolving
		@Deprecated
		public <T> SingleOutputStreamOperator<T> with(FlatJoinFunction<T1, T2, T> function, TypeInformation<T> resultType) {
			return (SingleOutputStreamOperator<T>) apply(function, resultType);
		}

		public <T> DataStream<T> apply(FlatJoinFunction<T1, T2, T> function) {
			TypeInformation<T> resultType = TypeExtractor.getBinaryOperatorReturnType(
				function,
				FlatJoinFunction.class,
				0,
				1,
				2,
				new int[]{2, 0},
				input1.getType(),
				input2.getType(),
				"Join",
				false);

			return apply(function, resultType);
		}

		@PublicEvolving
		@Deprecated
		public <T> SingleOutputStreamOperator<T> with(FlatJoinFunction<T1, T2, T> function) {
			return (SingleOutputStreamOperator<T>) apply(function);
		}

		public <T> DataStream<T> apply(JoinFunction<T1, T2, T> function, TypeInformation<T> resultType) {
			//clean the closure
			function = input1.getExecutionEnvironment().clean(function);

			coGroupedWindowedStream = input1.coGroup(input2)
				.where(keySelector1)
				.equalTo(keySelector2)
				.window(windowAssigner)
				.trigger(trigger)
				.evictor(evictor)
				.allowedLateness(allowedLateness);

			return coGroupedWindowedStream
					.apply(new JoinCoGroupFunction<>(function), resultType);
		}

		@PublicEvolving
		@Deprecated
		public <T> SingleOutputStreamOperator<T> with(JoinFunction<T1, T2, T> function, TypeInformation<T> resultType) {
			return (SingleOutputStreamOperator<T>) apply(function, resultType);
		}

		@VisibleForTesting
		Time getAllowedLateness() {
			return allowedLateness;
		}

		@VisibleForTesting
		CoGroupedStreams.WithWindow<T1, T2, KEY, W> getCoGroupedWindowedStream() {
			return coGroupedWindowedStream;
		}
	}
复制代码
with操作被标记为废弃
JoinFunction使用JoinCoGroupFunction包装,FlatJoinFunction使用FlatJoinCoGroupFunction包装

JoinFunction

flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/JoinFunction.java

@Public
@FunctionalInterface
public interface JoinFunction<IN1, IN2, OUT> extends Function, Serializable {

	/**
	 * The join method, called once per joined pair of elements.
	 *
	 * @param first The element from first input.
	 * @param second The element from second input.
	 * @return The resulting element.
	 *
	 * @throws Exception This method may throw exceptions. Throwing an exception will cause the operation
	 *                   to fail and may trigger recovery.
	 */
	OUT join(IN1 first, IN2 second) throws Exception;
}
复制代码
  • JoinFunction继承了Function、Serializable,它定义了join操作,默认是inner join的语义,如果需要outer join,可以使用CoGroupFunction

FlatJoinFunction

flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/FlatJoinFunction.java

@Public
@FunctionalInterface
public interface FlatJoinFunction<IN1, IN2, OUT> extends Function, Serializable {

	/**
	 * The join method, called once per joined pair of elements.
	 *
	 * @param first The element from first input.
	 * @param second The element from second input.
	 * @param out The collector used to return zero, one, or more elements.
	 *
	 * @throws Exception This method may throw exceptions. Throwing an exception will cause the operation
	 *                   to fail and may trigger recovery.
	 */
	void join (IN1 first, IN2 second, Collector<OUT> out) throws Exception;
}
复制代码
  • FlatJoinFunction继承了Function、Serializable,它定义了join操作,默认是inner join的语义,如果需要outer join,可以使用CoGroupFunction;与JoinFunction的join方法不同,FlatJoinFunction的join方法多了Collector参数,可以用来发射0条、1条或者多条数据,所以是Flat命名

CoGroupedStreams

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

@Public
public class CoGroupedStreams<T1, T2> {
	//......

@Public
	public static class WithWindow<T1, T2, KEY, W extends Window> {
		private final DataStream<T1> input1;
		private final DataStream<T2> input2;

		private final KeySelector<T1, KEY> keySelector1;
		private final KeySelector<T2, KEY> keySelector2;

		private final TypeInformation<KEY> keyType;

		private final WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner;

		private final Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger;

		private final Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor;

		private final Time allowedLateness;

		private WindowedStream<TaggedUnion<T1, T2>, KEY, W> windowedStream;

		protected WithWindow(DataStream<T1> input1,
				DataStream<T2> input2,
				KeySelector<T1, KEY> keySelector1,
				KeySelector<T2, KEY> keySelector2,
				TypeInformation<KEY> keyType,
				WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner,
				Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger,
				Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor,
				Time allowedLateness) {
			this.input1 = input1;
			this.input2 = input2;

			this.keySelector1 = keySelector1;
			this.keySelector2 = keySelector2;
			this.keyType = keyType;

			this.windowAssigner = windowAssigner;
			this.trigger = trigger;
			this.evictor = evictor;

			this.allowedLateness = allowedLateness;
		}

		@PublicEvolving
		public WithWindow<T1, T2, KEY, W> trigger(Trigger<? super TaggedUnion<T1, T2>, ? super W> newTrigger) {
			return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
					windowAssigner, newTrigger, evictor, allowedLateness);
		}

		@PublicEvolving
		public WithWindow<T1, T2, KEY, W> evictor(Evictor<? super TaggedUnion<T1, T2>, ? super W> newEvictor) {
			return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
					windowAssigner, trigger, newEvictor, allowedLateness);
		}

		@PublicEvolving
		public WithWindow<T1, T2, KEY, W> allowedLateness(Time newLateness) {
			return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
					windowAssigner, trigger, evictor, newLateness);
		}

		public <T> DataStream<T> apply(CoGroupFunction<T1, T2, T> function) {

			TypeInformation<T> resultType = TypeExtractor.getCoGroupReturnTypes(
				function,
				input1.getType(),
				input2.getType(),
				"CoGroup",
				false);

			return apply(function, resultType);
		}

		public <T> DataStream<T> apply(CoGroupFunction<T1, T2, T> function, TypeInformation<T> resultType) {
			//clean the closure
			function = input1.getExecutionEnvironment().clean(function);

			UnionTypeInfo<T1, T2> unionType = new UnionTypeInfo<>(input1.getType(), input2.getType());
			UnionKeySelector<T1, T2, KEY> unionKeySelector = new UnionKeySelector<>(keySelector1, keySelector2);

			DataStream<TaggedUnion<T1, T2>> taggedInput1 = input1
					.map(new Input1Tagger<T1, T2>())
					.setParallelism(input1.getParallelism())
					.returns(unionType);
			DataStream<TaggedUnion<T1, T2>> taggedInput2 = input2
					.map(new Input2Tagger<T1, T2>())
					.setParallelism(input2.getParallelism())
					.returns(unionType);

			DataStream<TaggedUnion<T1, T2>> unionStream = taggedInput1.union(taggedInput2);

			// we explicitly create the keyed stream to manually pass the key type information in
			windowedStream =
					new KeyedStream<TaggedUnion<T1, T2>, KEY>(unionStream, unionKeySelector, keyType)
					.window(windowAssigner);

			if (trigger != null) {
				windowedStream.trigger(trigger);
			}
			if (evictor != null) {
				windowedStream.evictor(evictor);
			}
			if (allowedLateness != null) {
				windowedStream.allowedLateness(allowedLateness);
			}

			return windowedStream.apply(new CoGroupWindowFunction<T1, T2, T, KEY, W>(function), resultType);
		}

		//......

	}

	//......
}
复制代码
  • CoGroupedStreams的整体类结构跟JoinedStreams很像,CoGroupedStreams提供where操作来构建Where对象;Where对象主要提供equalTo操作用于构建EqualTo对象;EqualTo对象提供window操作用于构建WithWindow对象;WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作;其中一个不同的地方是CoGroupedStreams定义的WithWindow对象的apply操作接收的Function是CoGroupFunction类型,而JoinedStreams定义的WithWindow对象的apply操作接收的Function类型是JoinFunction或FlatJoinFunction

CoGroupFunction

flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/CoGroupFunction.java

@Public
@FunctionalInterface
public interface CoGroupFunction<IN1, IN2, O> extends Function, Serializable {

	/**
	 * This method must be implemented to provide a user implementation of a
	 * coGroup. It is called for each pair of element groups where the elements share the
	 * same key.
	 *
	 * @param first The records from the first input.
	 * @param second The records from the second.
	 * @param out A collector to return elements.
	 *
	 * @throws Exception The function may throw Exceptions, which will cause the program to cancel,
	 *                   and may trigger the recovery logic.
	 */
	void coGroup(Iterable<IN1> first, Iterable<IN2> second, Collector<O> out) throws Exception;
}
复制代码
  • CoGroupFunction继承了Function、Serializable,它定义了coGroup操作,可以用来实现outer join,其参数使用的是Iterable,而JoinFunction与FlatJoinFunction的join参数使用的是单个对象类型

WrappingFunction

flink-java-1.7.0-sources.jar!/org/apache/flink/api/java/operators/translation/WrappingFunction.java

@Internal
public abstract class WrappingFunction<T extends Function> extends AbstractRichFunction {

	private static final long serialVersionUID = 1L;

	protected T wrappedFunction;

	protected WrappingFunction(T wrappedFunction) {
		this.wrappedFunction = wrappedFunction;
	}

	@Override
	public void open(Configuration parameters) throws Exception {
		FunctionUtils.openFunction(this.wrappedFunction, parameters);
	}

	@Override
	public void close() throws Exception {
		FunctionUtils.closeFunction(this.wrappedFunction);
	}

	@Override
	public void setRuntimeContext(RuntimeContext t) {
		super.setRuntimeContext(t);

		FunctionUtils.setFunctionRuntimeContext(this.wrappedFunction, t);
	}

	public T getWrappedFunction () {
		return this.wrappedFunction;
	}
}
复制代码
  • WrappingFunction继承了AbstractRichFunction,这里它覆盖了父类的open、close、setRuntimeContext方法,用于管理wrappedFunction

JoinCoGroupFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

/**
	 * CoGroup function that does a nested-loop join to get the join result.
	 */
	private static class JoinCoGroupFunction<T1, T2, T>
			extends WrappingFunction<JoinFunction<T1, T2, T>>
			implements CoGroupFunction<T1, T2, T> {
		private static final long serialVersionUID = 1L;

		public JoinCoGroupFunction(JoinFunction<T1, T2, T> wrappedFunction) {
			super(wrappedFunction);
		}

		@Override
		public void coGroup(Iterable<T1> first, Iterable<T2> second, Collector<T> out) throws Exception {
			for (T1 val1: first) {
				for (T2 val2: second) {
					out.collect(wrappedFunction.join(val1, val2));
				}
			}
		}
	}
复制代码
  • JoinCoGroupFunction继承了WrappingFunction,同时实现CoGroupFunction接口定义的coGroup方法,默认是遍历第一个集合,对其每个元素遍历第二个集合,挨个执行wrappedFunction.join,然后发射join数据
  • JoinedStreams定义了私有静态类JoinCoGroupFunction,JoinedStreams的WithWindow对象的apply方法内部使用它将JoinFunction进行包装,然后去调用CoGroupedStreams的WithWindow的apply方法
  • JoinFunction定义的join方法,接收的是两个对象类型参数,而JoinCoGroupFunction定义的coGroup方法,接收的两个Iterable类型参数

FlatJoinCoGroupFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/JoinedStreams.java

/**
	 * CoGroup function that does a nested-loop join to get the join result. (FlatJoin version)
	 */
	private static class FlatJoinCoGroupFunction<T1, T2, T>
			extends WrappingFunction<FlatJoinFunction<T1, T2, T>>
			implements CoGroupFunction<T1, T2, T> {
		private static final long serialVersionUID = 1L;

		public FlatJoinCoGroupFunction(FlatJoinFunction<T1, T2, T> wrappedFunction) {
			super(wrappedFunction);
		}

		@Override
		public void coGroup(Iterable<T1> first, Iterable<T2> second, Collector<T> out) throws Exception {
			for (T1 val1: first) {
				for (T2 val2: second) {
					wrappedFunction.join(val1, val2, out);
				}
			}
		}
	}
复制代码
  • FlatJoinCoGroupFunction继承了WrappingFunction,同时实现CoGroupFunction接口定义的coGroup方法,默认是遍历第一个集合,对其每个元素遍历第二个集合,挨个执行wrappedFunction.join,然后发射join数据
  • JoinedStreams定义了私有静态类FlatJoinCoGroupFunction,JoinedStreams的WithWindow对象的apply方法内部使用它将FlatJoinFunction进行包装,然后去调用CoGroupedStreams的WithWindow的apply方法
  • FlatJoinFunction定义的join方法,接收的是两个对象类型参数,而FlatJoinCoGroupFunction定义的coGroup方法,接收的两个Iterable类型参数

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Effective Objective-C 2.0

Effective Objective-C 2.0

Matt Galloway / 爱飞翔 / 机械工业出版社 / 2014-1 / 69.00元

《effective objective-c 2.0:编写高质量ios与os x代码的52个有效方法》是世界级c++开发大师scott meyers亲自担当顾问编辑的“effective software development series”系列丛书中的新作,amazon全五星评价。从语法、接口与api设计、内存管理、框架等7大方面总结和探讨了objective-c编程中52个鲜为人知和容易被忽......一起来看看 《Effective Objective-C 2.0》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

MD5 加密
MD5 加密

MD5 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具