来,控制一下 Goroutine 的并发数量

栏目: Go · 发布时间: 5年前

内容简介:原文地址:在这里,假设

来,控制一下 Goroutine 的并发数量

原文地址: 来,控制一下 Goroutine 的并发数量

问题

func main() {
    userCount := math.MaxInt64
    for i := 0; i < userCount; i++ {
        go func(i int) {
            // 做一些各种各样的业务逻辑处理
            fmt.Printf("go func: %d\n", i)
            time.Sleep(time.Second)
        }(i)
    }
}

在这里,假设 userCount 是一个外部传入的参数(不可预测,有可能值非常大),有人会全部丢进去循环。想着全部都并发 goroutine 去同时做某一件事。觉得这样子会效率会更高,对不对!

那么,你觉得这里有没有什么问题?

噩梦般的开始

当然,在 特定场景下 ,问题可大了。因为在本文被丢进去同时并发的可是一个极端值。我们可以一起观察下图的指标分析,看看情况有多 “崩溃”。下图是上述代码的表现:

输出结果

...
go func: 5839
go func: 5840
go func: 5841
go func: 5842
go func: 5915
go func: 5524
go func: 5916
go func: 8209
go func: 8264
signal: killed

如果你自己执行过代码,在 “输出结果” 上你会遇到如下问题:

  • 系统资源占用率不断上涨
  • 输出一定数量后:控制台就不再刷新输出最新的值了
  • 信号量:signal: killed

系统负载

来,控制一下 Goroutine 的并发数量

CPU

来,控制一下 Goroutine 的并发数量

短时间内系统负载暴增

虚拟内存

来,控制一下 Goroutine 的并发数量

短时间内占用的虚拟内存暴增

top

PID    COMMAND      %CPU  TIME     #TH   #WQ  #PORT MEM    PURG   CMPRS  PGRP  PPID  STATE    BOOSTS
...
73414  test         100.2 01:59.50 9/1   0    18    6801M+ 0B     114G+  73403 73403 running  *0[1]

小结

如果仔细看过监控 工具 的示意图,就可以知道其实我间隔的执行了两次,能看到系统间的使用率幅度非常大。当进程被杀掉后,整体又恢复为正常值

在这里,我们回到主题,就是在 不控制并发的 goroutine 数量 会发生什么问题?大致如下:

  • CPU 使用率浮动上涨
  • Memory 占用不断上涨。也可以看看 CMPRS,它表示进程的压缩数据的字节数。已经到达 114G+ 了
  • 主进程崩溃(被杀掉了)

简单来说,“崩溃” 的原因就是对系统资源的占用过大。常见的比如:打开文件数(too many files open)、内存占用等等

危害

对该台服务器产生非常大的影响,影响自身及相关联的应用。很有可能导致不可用或响应缓慢,另外启动了复数 “失控” 的 goroutine,导致程序流转混乱

解决方案

在前面花了大量篇幅,渲染了在存在大量并发 goroutine 数量时,不控制的话会出现 “严重” 的问题,接下来一起思考下解决方案。如下:

  1. 控制/限制 goroutine 同时并发运行的数量
  2. 改变应用程序的逻辑写法(避免大规模的使用系统资源和等待)
  3. 调整服务的硬件配置、最大打开数、内存等阈值

控制 goroutine 并发数量

接下来正式的开始解决这个问题,希望你认真阅读的同时加以思考,因为这个问题在实际项目中真的是太常见了!

问题已经抛出来了,你需要做的是 想想有什么办法 解决这个问题。建议你自行思考一下技术方案。再接着往下看 :-)

尝试 chan

func main() {
    userCount := 10
    ch := make(chan bool, 2)
    for i := 0; i < userCount; i++ {
        ch <- true
        go Read(ch, i)
    }
    
    //time.Sleep(time.Second)
}

func Read(ch chan bool, i int) {
    fmt.Printf("go func: %d\n", i)
    <- ch
}

输出结果:

go func: 1
go func: 2
go func: 3
go func: 4
go func: 5
go func: 6
go func: 7
go func: 8
go func: 0

嗯,我们似乎很好的控制了 2 个 2 个的 “顺序” 执行多个 goroutine。但是,问题出现了。你仔细数一下输出结果,才 9 个值?

这明显就不对。原因出在当主协程结束时,子协程也是会被终止掉的。因此剩余的 goroutine 没来及把值输出,就被送上路了(不信你把 time.Sleep 打开看看,看看输出数量)

尝试 sync

...
var wg = sync.WaitGroup{}

func main() {
    userCount := 10
    for i := 0; i < userCount; i++ {
        wg.Add(1)
        go Read(i)
    }

    wg.Wait()
}

func Read(i int) {
    defer wg.Done()
    fmt.Printf("go func: %d\n", i)
}

嗯,单纯的使用 sync.WaitGroup 也不行。没有控制到同时并发的 goroutine 数量(代指达不到本文所要求的目标)

小结

单纯 简单 使用 channel 或 sync 都有明显缺陷,不行。我们再看看组件配合能不能实现

尝试 chan + sync

...
var wg = sync.WaitGroup{}

func main() {
    userCount := 10
    ch := make(chan bool, 2)
    for i := 0; i < userCount; i++ {
        go Read(ch, i)
    }

    wg.Wait()
}

func Read(ch chan bool, i int) {
    defer wg.Done()
    wg.Add(1)

    ch <- true
    fmt.Printf("go func: %d, time: %d\n", i, time.Now().Unix())
    time.Sleep(time.Second)
    <-ch
}

输出结果:

go func: 9, time: 1547911938
go func: 1, time: 1547911938
go func: 6, time: 1547911939
go func: 7, time: 1547911939
go func: 8, time: 1547911940
go func: 0, time: 1547911940
go func: 3, time: 1547911941
go func: 2, time: 1547911941
go func: 4, time: 1547911942
go func: 5, time: 1547911942

从输出结果来看,确实实现了控制 goroutine 以 2 个 2 个的数量去执行我们的 “业务逻辑”,当然结果集也理所应当的是乱序输出

方案一:简单 Semaphore

在确立了简单使用 chan + sync 的方案是可行后,我们重新将流转逻辑封装为 gsema ,主程序变成如下:

import (
    "fmt"
    "time"

    "github.com/EDDYCJY/gsema"
)

var sema = gsema.NewSemaphore(3)

func main() {
    userCount := 10
    for i := 0; i < userCount; i++ {
        go Read(i)
    }

    sema.Wait()
}

func Read(i int) {
    defer sema.Done()
    sema.Add(1)

    fmt.Printf("go func: %d, time: %d\n", i, time.Now().Unix())
    time.Sleep(time.Second)
}

分析方案

在上述代码中,程序执行流程如下:

sema

看上去人模人样,没什么严重问题。但却有一个 “大” 坑,认真看到第二点 “每次启动一个 goroutine” 这句话。这里 有点问题 ,提前产生那么多的 goroutine 会不会有什么问题,接下来一起分析下利弊,如下:

  • 适合 量不大、复杂度低 的使用场景

    • 几百几千个、几十万个也是可以接受的(看具体业务场景)
    • 实际业务逻辑在运行前就已经被阻塞等待了(因为并发数受限),基本实际业务逻辑损耗的性能比 goroutine 本身大
    • goroutine 本身很轻便,仅损耗极少许的内存空间和调度。这种等待响应的情况都是躺好了,等待任务唤醒
  • Semaphore 操作复杂度低且流转简单,容易控制

  • 不适合 量很大、复杂度高 的使用场景

    • 有几百万、几千万个 goroutine 的话,就浪费了大量调度 goroutine 和内存空间。恰好你的服务器也接受不了的话
  • Semaphore 操作复杂度提高,要管理更多的状态

小结

  • 基于什么业务场景,就用什么方案去做事
  • 有足够的时间,允许你去追求更优秀、极致的方案(用第三方库也行)

用哪种方案,我认为主要基于以上两点去思考,都是 OK 的。没有对错,只有当前业务场景能不能接受,这个预先启动的 goroutine 数量你的系统是否能够接受

当然了,常见/简单的 Go 应用采用这类技术方案,基本就能解决问题了。因为像本文第一节 “问题” 如此超巨大数量的情况,情况很少。其并不存在那些 “特殊性”。因此用这个方案基本 OK

灵活控制 goroutine 并发数量

小手一紧。隔壁老王发现了新的问题。“方案一” 中,在 输入输出一体 的情况下,在常见的业务场景中确实可以

但,这次新的业务场景比较特殊,要控制输入的数量,以此达到 改变允许并发运行 goroutine 的数量 。我们仔细想想,要做出如下改变:

  • 输入/输出要抽离,才可以分别控制
  • 输入/输出要可变,理所应当在 for-loop 中(可设置数值的地方)
  • 允许改变 goroutine 并发数量,但它也必须有一个 最大值 (因为允许改变是相对)

方案二:灵活 chan + sync

package main

import (
    "fmt"
    "sync"
    "time"
)

var wg sync.WaitGroup

func main() {
    userCount := 10
    ch := make(chan int, 5)
    for i := 0; i < userCount; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            for d := range ch {
                fmt.Printf("go func: %d, time: %d\n", d, time.Now().Unix())
                time.Sleep(time.Second * time.Duration(d))
            }
        }()
    }

    for i := 0; i < 10; i++ {
        ch <- 1
        ch <- 2
        //time.Sleep(time.Second)
    }

    close(ch)
    wg.Wait()
}

输出结果:

...
go func: 1, time: 1547950567
go func: 3, time: 1547950567
go func: 1, time: 1547950567
go func: 2, time: 1547950567
go func: 2, time: 1547950567
go func: 3, time: 1547950567
go func: 1, time: 1547950568
go func: 2, time: 1547950568
go func: 3, time: 1547950568
go func: 1, time: 1547950568
go func: 3, time: 1547950569
go func: 2, time: 1547950569

在 “方案二” 中,我们可以随时随地的根据新的业务需求,做如下事情:

  • 变更 channel 的输入数量
  • 能够根据特殊情况,变更 channel 的循环值
  • 变更最大允许并发的 goroutine 数量

总的来说,就是可控空间都尽量放开了,是不是更加灵活了呢 :-)

方案三:第三方库

比较成熟的第三方库也不少,基本都是以生成和管理 goroutine 为目标的池工具。我简单列了几个,具体建议大家阅读下源码或者多找找,原理相似

总结

在本文的开头,我花了大力气(极端数量),告诉你 同时并发过多的 goroutine 数量会导致系统占用资源不断上涨。最终该服务崩盘的极端情况 。为的是希望你今后避免这种问题,给你留下深刻的印象

接下来我们以 “控制 goroutine 并发数量” 为主题,展开了一番分析。分别给出了三种方案。在我看来,各具优缺点,我建议你 挑选合适自身场景的技术方案 就可以了

因为,有不同类型的技术方案也能解决这个问题,千人千面。本文推荐的是较常见的解决方案,也欢迎大家在评论区继续补充 :-)


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

一本书读懂24种互联网思维

一本书读懂24种互联网思维

安杰 / 台海出版社 / 2015-3-1 / 39.80元

互联网思维已经不再局限于互联网,与当初人类史上的“文艺复兴”一样,这种思维的核心即将开始扩散开去,对整个大时代造成深远的影响。本书是深入研究互联网思维的精华之作,作者深入浅出地集中阐述了24种互联网思维的内核与精神,并结合实例对这24种互联网思维逐一进行了点评。对于个人与企业如何抓住互联网思维背后正喷薄而出的工作、生活、商业上的大革新与大机遇,如何在互联网思维下进行运作,如何运用互联网思维进行升级......一起来看看 《一本书读懂24种互联网思维》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具