Redis 和 Memcached 的区别

栏目: 数据库 · 发布时间: 6年前

内容简介:Redis 和 Memcached 都是使用内存存储数据,并且都是存储键值对,但是 redis 和 memcached 的区别其实还是很大的,这两个产品各有优势,没有谁就牛逼一点的说法,主要还是看使用场景吧!下面从几点聊一下这两者的区别:memcached 使用 key-value 的形式存储和访问数据,其在内存中维护一张 hash 表,这使其对数据查询方面耗时降低了O(1),保证了对数据的高可用访问。

Redis 和 Memcached 都是使用内存存储数据,并且都是存储键值对,但是 redis 和 memcached 的区别其实还是很大的,这两个产品各有优势,没有谁就牛逼一点的说法,主要还是看使用场景吧!

下面从几点聊一下这两者的区别:

数据类型支持

memcached 使用 key-value 的形式存储和访问数据,其在内存中维护一张 hash 表,这使其对数据查询方面耗时降低了O(1),保证了对数据的高可用访问。

而 redis 除了提供key-value,还提供了 list、hash、set、zset等数据类型的支持。

网络I/0模型不同

memcached是多线程,非阻塞IO复用的网络模型,分为监听主线程和worker子线程,监听线程监听网络连接,接受请求后,将连接描述字pipe传递给worker线程,进行读写IO,网络层使用libevent封装的事件库,多线程模型可以发挥多核作用,但是引入了cache coherency和锁的问题,比如:memcached最常用的stats命令,实际memcached所有操作都要对这个全局变量加锁,进行技术等工作,带来了性能损耗。

redis使用单线程的IO复用模型,自己封装了一个简单的AeEvent事件处理框架,主要实现了epoll, kqueue和select,对于单存只有IO操作来说,单线程可以将速度优势发挥到最大,但是redis也提供了一些简单的计算功能,比如 排序 、聚合等,对于这些操作,单线程模型施加会严重影响整体吞吐量,CPU计算过程中,整个IO调度都是被阻塞的。

内存管理机制

对于像Redis和Memcached这种基于内存的数据库系统来说,内存管理的效率高低是影响系统性能的关键因素。

Memcached默认使用Slab Allocation机制管理内存,其主要思想是按照预先规定的大小,将分配的内存分割成特定长度的块以存储相应长度的key-value数据记录,以完全解决内存碎片问题。

Memcached使用预分配的内存池的方式,使用slab和大小不同的chunk来管理内存,Item根据大小选择合适的chunk存储,内存池的方式可以省去申请/释放内存的开销,并且能减小内存碎片产生,但这种方式也会带来一定程度上的空间浪费,并且在内存仍然有很大空间时,新的数据也可能会被剔除.

Redis的内存管理主要通过源码中zmalloc.h和zmalloc.c两个文件来实现的。Redis为了方便内存的管理,在分配一块内存之后,会将这块内存的大小存入内存块的头部。

在Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。当物理内存用完时,Redis可以将一些很久没用到的value交换到磁盘。Redis只会缓存所有的key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以保持超过其机器本身内存大小的数据。

数据存储及持久化

memcached不支持内存数据的持久化操作,所有的数据都以in-memory的形式存储。

redis支持持久化操作。redis提供了两种不同的持久化方法来讲数据存储到硬盘里面,一种是快照(snapshotting),它可以将存在于某一时刻的所有数据都写入硬盘里面。另一种方法叫只追加文件(append-only file, AOF),它会在执行写命令时,将被执行的写命令复制到硬盘里面。

数据一致性问题

Memcached提供了cas命令,可以保证多个并发访问操作同一份数据的一致性问题。 Redis没有提供cas 命令,并不能保证这点,不过Redis提供了事务的功能,可以保证一串 命令的原子性,中间不会被任何操作打断。

集群管理不同

Memcached是全内存的数据缓冲系统,Redis虽然支持数据的持久化,但是全内存毕竟才是其高性能的本质。作为基于内存的存储系统来说,机器物理内存的大小就是系统能够容纳的最大数据量。如果需要处理的数据量超过了单台机器的物理内存大小,就需要构建分布式集群来扩展存储能力。

Memcached本身并不支持分布式,因此只能在客户端通过像一致性哈希这样的分布式算法来实现Memcached的分布式存储。下图给出了Memcached的分布式存储实现架构。当客户端向Memcached集群发送数据之前,首先会通过内置的分布式算法计算出该条数据的目标节点,然后数据会直接发送到该节点上存储。但客户端查询数据时,同样要计算出查询数据所在的节点,然后直接向该节点发送查询请求以获取数据。

相较于Memcached只能采用客户端实现分布式存储,Redis更偏向于在服务器端构建分布式存储。最新版本的Redis已经支持了分布式存储功能。Redis Cluster是一个实现了分布式且允许单点故障的Redis高级版本,它没有中心节点,具有线性可伸缩的功能。Redis Cluster的分布式存储架构,节点与节点之间通过二进制协议进行通信,节点与客户端之间通过ascii协议进行通信。在数据的放置策略上,Redis Cluster将整个key的数值域分成4096个哈希槽,每个节点上可以存储一个或多个哈希槽,也就是说当前Redis Cluster支持的最大节点数就是4096。Redis Cluster使用的分布式算法也很简单:crc16( key ) % HASH_SLOTS_NUMBER。

为了保证单点故障下的数据可用性,Redis Cluster引入了Master节点和Slave节点。在Redis Cluster中,每个Master节点都会有对应的两个用于冗余的Slave节点。这样在整个集群中,任意两个节点的宕机都不会导致数据的不可用。当Master节点退出后,集群会自动选择一个Slave节点成为新的Master节点。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Google 广告高阶优化(第3版)

Google 广告高阶优化(第3版)

【美】Brad Geddes(布兰德.盖兹) / 宫鑫、康宁、王娜 / 电子工业出版社 / 2015-9 / 99.00元

《Google 广告高阶优化(第3版)》可以说是Google AdWords的终极指南,内容非常丰富,第三版在内容上进行了全面更新。介绍了AdWords的最新最完整的功能,阐释其工作原理,也提供了相应的优化方法、策略和实践教程,读者可以随时在自己的PPC广告系列中进行实践。第三版增添了50多页新内容,涵盖Google系统最近的所有变动,包括广告系列结构的变化、出价调整器、重定向、视频广告功能、全新......一起来看看 《Google 广告高阶优化(第3版)》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码