内容简介:Post-training 量化是一种可以减小模型大小,同时降低 3 倍延迟并且仍然能够保持模型精度的一般方法。Post-training量化将权重从浮点量化为 8 位精度。此技术在在推理时,权重值从 8 位精度转换为浮点数,并使用浮点内核进行计算。此转换只执行一次并进行缓存以减少延迟。Commit suggestion Add suggestion to batch
Post-training 量化是一种可以减小模型大小,同时降低 3 倍延迟并且仍然能够保持模型精度的一般方法。Post-training量化将权重从浮点量化为 8 位精度。此技术在 TensorFlow Lite model converter 中作为一个功能选项被使用。
import tensorflow as tf converter = tf.contrib.lite.TocoConverter.from_saved_model(saved_model_dir) converter.post_training_quantize = True tflite_quantized_model = converter.convert() open("quantized_model.tflite", "wb").write(tflite_quantized_model) 复制代码
在推理时,权重值从 8 位精度转换为浮点数,并使用浮点内核进行计算。此转换只执行一次并进行缓存以减少延迟。
Commit suggestion Add suggestion to batch
在推理时,权重值从 8 位精度转换为浮点数,并使用浮点内核进行计算。此转换只执行一次并进行缓存以减少延迟。
为了进一步改善延迟,混合运算符动态地将激活量化为 8 位,并使用 8 位权重和激活函数执行计算。此种优化方式可以提供接近完全定点推断时的延迟。但是,输出仍然使用浮点存储,因此混合运算的加速效果仍然小于完全定点计算。混合操作可用于大多数计算密集型网络:
- tf.contrib.layers.fully_connected
- tf.nn.conv2d
- tf.nn.embedding_lookup
- BasicRNN
- tf.nn.bidirectional_dynamic_rnn for BasicRNNCell type
- tf.nn.dynamic_rnn for LSTM and BasicRNN Cell types
由于权重在训练后被量化,因此可能存在精度损失,特别是对于较小的网络。 TensorFlow Lite model repository 提供了为特定网络提供预训练的完全量化模型。检查量化模型的准确性以验证任何精度上的降低是否在可接受的限度内是很重要的。这里有一个 工具 可以评估 TensorFlow Lite 模型精确度 。
如果精确度下降幅度过大,可以考虑使用 注重量化的训练 。
量化张量的表示
TensorFlow 将数字浮点数组转换为 8 位表示形式作为压缩问题。由于训练的神经网络模型中的权重和激活张量倾向于分布在相对小范围内的值。(例如,对于权重为 -15 到 +15 ,对于图像模型激活为 -500 到 1000 )。并且由于神经网络在处理噪声数据时具有健壮性,因此通过量化到一小组值引入的误差将整体结果的精度保持在可接受的阈值内。选定的表示必须执行快速计算,尤其是在运行模型时产生的具有大量计算的大型矩阵乘法。
这用两个浮点表示,它存储对应于最低和最高量化值的总体最小值和最大值。量化阵列中的每个条目表示该范围内的浮点值,在最小值和最大值之间线性分布。例如,当一个 8 位数组的最小值为 -10.0 ,最大值为 30.0f 时,其量化值表示如下:
量化值 | 浮点值 |
---|---|
0 | -10.0 |
128 | 10.0 |
255 | 30.0 |
这种表示方式的好处有:
- 它有效地表示任意大小的范围。。
- 数值无需对称。
- 有符号数和无符号数均可被表示。
- 线性扩展使乘法变得简单。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 【邢不行|量化小讲堂系列05-Python量化入门】计算创业板平均市盈率
- 量化交易的尬舞
- 抄底的艺术:量化交易之路
- 用R语言开始量化投资
- EasyQuant 后量化算法论文解读
- EasyQuant 后量化算法论文解读
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
图解物联网
[ 日] NTT DATA集团、河村雅人、大塚纮史、小林佑辅、小山武士、宫崎智也、石黑佑树、小岛康平 / 丁 灵 / 人民邮电出版社 / 2017-4 / 59.00元
本书图例丰富,从设备、传感器及传输协议等构成IoT的技术要素讲起,逐步深入讲解如何灵活运用IoT。内容包括用于实现IoT的架构、传感器的种类及能从传感器获取的信息等,并介绍了传感设备原型设计必需的Arduino等平台及这些平台的选择方法,连接传感器的电路,传感器的数据分析,乃至IoT跟智能手机/可穿戴设备的联动等。此外,本书以作者们开发的IoT系统为例,讲述了硬件设置、无线通信及网络安全等运用Io......一起来看看 《图解物联网》 这本书的介绍吧!