在 Go 中恰到好处的内存对齐

栏目: Go · 发布时间: 5年前

内容简介:原文地址:在开始之前,希望你计算一下

在  <a href='https://www.codercto.com/topics/6127.html'>Go</a>  中恰到好处的内存对齐

原文地址: 在 Go 中恰到好处的内存对齐

问题

type Part1 struct {
    a bool
    b int32
    c int8
    d int64
    e byte
}

在开始之前,希望你计算一下 Part1 共占用的大小是多少呢?

func main() {
    fmt.Printf("bool size: %d\n", unsafe.Sizeof(bool(true)))
    fmt.Printf("int32 size: %d\n", unsafe.Sizeof(int32(0)))
    fmt.Printf("int8 size: %d\n", unsafe.Sizeof(int8(0)))
    fmt.Printf("int64 size: %d\n", unsafe.Sizeof(int64(0)))
    fmt.Printf("byte size: %d\n", unsafe.Sizeof(byte(0)))
    fmt.Printf("string size: %d\n", unsafe.Sizeof("EDDYCJY"))
}

输出结果:

bool size: 1
int32 size: 4
int8 size: 1
int64 size: 8
byte size: 1
string size: 16

这么一算, Part1 这一个结构体的占用内存大小为 1+4+1+8+1 = 15 个字节。相信有的小伙伴是这么算的,看上去也没什么毛病

真实情况是怎么样的呢?我们实际调用看看,如下:

type Part1 struct {
    a bool
    b int32
    c int8
    d int64
    e byte
}

func main() {
    part1 := Part1{}
    
    fmt.Printf("part1 size: %d, align: %d\n", unsafe.Sizeof(part1), unsafe.Alignof(part1))
}

输出结果:

part1 size: 32, align: 8

最终输出为占用 32 个字节。这与前面所预期的结果完全不一样。这充分地说明了先前的计算方式是错误的。为什么呢?

在这里要提到 “内存对齐” 这一概念,才能够用正确的姿势去计算,接下来我们详细的讲讲它是什么

内存对齐

有的小伙伴可能会认为内存读取,就是一个简单的字节数组摆放

在 Go 中恰到好处的内存对齐

上图表示一个坑一个萝卜的内存读取方式。但实际上 CPU 并不会以一个一个字节去读取和写入内存。相反 CPU 读取内存是 一块一块读取 的,块的大小可以为 2、4、6、8、16 字节等大小。块大小我们称其为 内存访问粒度 。如下图:

在 Go 中恰到好处的内存对齐

在样例中,假设访问粒度为 4。 CPU 是以每 4 个字节大小的访问粒度去读取和写入内存的。这才是正确的姿势

为什么要关心对齐

  • 你正在编写的代码在性能(CPU、Memory)方面有一定的要求
  • 你正在处理向量方面的指令
  • 某些硬件平台(ARM)体系不支持未对齐的内存访问

另外作为一个工程师,你也很有必要学习这块知识点哦 :)

为什么要做对齐

  • 平台(移植性)原因:不是所有的硬件平台都能够访问任意地址上的任意数据。例如:特定的硬件平台只允许在特定地址获取特定类型的数据,否则会导致异常情况
  • 性能原因:若访问未对齐的内存,将会导致 CPU 进行两次内存访问,并且要花费额外的时钟周期来处理对齐及运算。而本身就对齐的内存仅需要一次访问就可以完成读取动作

在 Go 中恰到好处的内存对齐

在上图中,假设从 Index 1 开始读取,将会出现很崩溃的问题。因为它的内存访问边界是不对齐的。因此 CPU 会做一些额外的处理工作。如下:

  1. CPU 首次 读取未对齐地址的第一个内存块,读取 0-3 字节。并移除不需要的字节 0
  2. CPU 再次 读取未对齐地址的第二个内存块,读取 4-7 字节。并移除不需要的字节 5、6、7 字节
  3. 合并 1-4 字节的数据
  4. 合并后放入寄存器

从上述流程可得出,不做 “内存对齐” 是一件有点 "麻烦" 的事。因为它会增加许多耗费时间的动作

而假设做了内存对齐,从 Index 0 开始读取 4 个字节,只需要读取一次,也不需要额外的运算。这显然高效很多,是标准的 空间换时间 做法

默认系数

在不同平台上的编译器都有自己默认的 “对齐系数”,可通过预编译命令 #pragma pack(n) 进行变更,n 就是代指 “对齐系数”。一般来讲,我们常用的平台的系数如下:

  • 32 位:4
  • 64 位:8

另外要注意,不同硬件平台占用的大小和对齐值都可能是不一样的。因此本文的值不是唯一的,调试的时候需按本机的实际情况考虑

成员对齐

func main() {
    fmt.Printf("bool align: %d\n", unsafe.Alignof(bool(true)))
    fmt.Printf("int32 align: %d\n", unsafe.Alignof(int32(0)))
    fmt.Printf("int8 align: %d\n", unsafe.Alignof(int8(0)))
    fmt.Printf("int64 align: %d\n", unsafe.Alignof(int64(0)))
    fmt.Printf("byte align: %d\n", unsafe.Alignof(byte(0)))
    fmt.Printf("string align: %d\n", unsafe.Alignof("EDDYCJY"))
    fmt.Printf("map align: %d\n", unsafe.Alignof(map[string]string{}))
}

输出结果:

bool align: 1
int32 align: 4
int8 align: 1
int64 align: 8
byte align: 1
string align: 8
map align: 8

在 Go 中可以调用 unsafe.Alignof 来返回相应类型的对齐系数。通过观察输出结果,可得知基本都是 2^n ,最大也不会超过 8。这是因为我手提(64 位)编译器默认对齐系数是 8,因此最大值不会超过这个数

整体对齐

在上小节中,提到了结构体中的成员变量要做字节对齐。那么想当然身为最终结果的结构体,也是需要做字节对齐的

对齐规则

  • 结构体的成员变量,第一个成员变量的偏移量为 0。往后的每个成员变量的对齐值必须为 编译器默认对齐长度#pragma pack(n) )或 当前成员变量类型的长度unsafe.Sizeof ),取 最小值作为当前类型的对齐值 。其偏移量必须为对齐值的整数倍
  • 结构体本身,对齐值必须为 编译器默认对齐长度#pragma pack(n) )或 结构体的所有成员变量类型中的最大长度 ,取 最大数的最小整数倍 作为对齐值
  • 结合以上两点,可得知若 编译器默认对齐长度#pragma pack(n) )超过结构体内成员变量的类型最大长度时,默认对齐长度是没有任何意义的

分析流程

接下来我们一起分析一下,“它” 到底经历了些什么,影响了 “预期” 结果

成员变量 类型 偏移量 自身占用
a bool 0 1
字节对齐 1 3
b int32 4 4
c int8 8 1
字节对齐 9 7
d int64 16 8
e byte 24 1
字节对齐 25 7
总占用大小 - - 32

成员对齐

  • 第一个成员 a

    • 类型为 bool
    • 大小/对齐值为 1 字节
    • 初始地址,偏移量为 0。占用了第 1 位
  • 第二个成员 b

    • 类型为 int32
    • 大小/对齐值为 4 字节
    • 根据规则 1,其偏移量必须为 4 的整数倍。确定偏移量为 4,因此 2-4 位为 Padding。而当前数值从第 5 位开始填充,到第 8 位。如下:axxx|bbbb
  • 第三个成员 c

    • 类型为 int8
    • 大小/对齐值为 1 字节
    • 根据规则1,其偏移量必须为 1 的整数倍。当前偏移量为 8。不需要额外对齐,填充 1 个字节到第 9 位。如下:axxx|bbbb|c...
  • 第四个成员 d

    • 类型为 int64
    • 大小/对齐值为 8 字节
    • 根据规则 1,其偏移量必须为 8 的整数倍。确定偏移量为 16,因此

9-16 位为 Padding。而当前数值从第 17 位开始写入,到第 24 位。如下:axxx|bbbb|cxxx|xxxx|dddd|dddd

  • 第五个成员 e

    • 类型为 byte
    • 大小/对齐值为 1 字节
    • 根据规则 1,其偏移量必须为 1 的整数倍。当前偏移量为 24。不需要额外对齐,填充 1 个字节到第 25 位。如下:axxx|bbbb|cxxx|xxxx|dddd|dddd|e...

整体对齐

在每个成员变量进行对齐后,根据规则 2,整个结构体本身也要进行字节对齐,因为可发现它可能并不是 2^n ,不是偶数倍。显然不符合对齐的规则

根据规则 2,可得出对齐值为 8。现在的偏移量为 25,不是 8 的整倍数。因此确定偏移量为 32。对结构体进行对齐

结果

Part1 内存布局:axxx|bbbb|cxxx|xxxx|dddd|dddd|exxx|xxxx

小结

通过本节的分析,可得知先前的 “推算” 为什么错误?

是因为实际内存管理并非 “一个萝卜一个坑” 的思想。而是一块一块。通过空间换时间(效率)的思想来完成这块读取、写入。另外也需要兼顾不同平台的内存操作情况

巧妙的结构体

在上一小节,可得知根据成员变量的类型不同,其结构体的内存会产生对齐等动作。那假设字段顺序不同,会不会有什么变化呢?我们一起来试试吧 :-)

type Part1 struct {
    a bool
    b int32
    c int8
    d int64
    e byte
}

type Part2 struct {
    e byte
    c int8
    a bool
    b int32
    d int64
}

func main() {
    part1 := Part1{}
    part2 := Part2{}

    fmt.Printf("part1 size: %d, align: %d\n", unsafe.Sizeof(part1), unsafe.Alignof(part1))
    fmt.Printf("part2 size: %d, align: %d\n", unsafe.Sizeof(part2), unsafe.Alignof(part2))
}

输出结果:

part1 size: 32, align: 8
part2 size: 16, align: 8

通过结果可以惊喜的发现,只是 “简单” 对成员变量的字段顺序进行改变,就改变了结构体占用大小

接下来我们一起剖析一下 Part2 ,看看它的内部到底和上一位之间有什么区别,才导致了这样的结果?

分析流程

成员变量 类型 偏移量 自身占用
e byte 0 1
c int8 1 1
a bool 2 1
字节对齐 3 1
b int32 4 4
d int64 8 8
总占用大小 - - 16

成员对齐

  • 第一个成员 e

    • 类型为 byte
    • 大小/对齐值为 1 字节
    • 初始地址,偏移量为 0。占用了第 1 位
  • 第二个成员 c

    • 类型为 int8
    • 大小/对齐值为 1 字节
    • 根据规则1,其偏移量必须为 1 的整数倍。当前偏移量为 2。不需要额外对齐
  • 第三个成员 a

    • 类型为 bool
    • 大小/对齐值为 1 字节
    • 根据规则1,其偏移量必须为 1 的整数倍。当前偏移量为 3。不需要额外对齐
  • 第四个成员 b

    • 类型为 int32
    • 大小/对齐值为 4 字节
    • 根据规则1,其偏移量必须为 4 的整数倍。确定偏移量为 4,因此第 3 位为 Padding。而当前数值从第 4 位开始填充,到第 8 位。如下:ecax|bbbb
  • 第五个成员 d

    • 类型为 int64
    • 大小/对齐值为 8 字节
    • 根据规则1,其偏移量必须为 8 的整数倍。当前偏移量为 8。不需要额外对齐,从 9-16 位填充 8 个字节。如下:ecax|bbbb|dddd|dddd

整体对齐

符合规则 2,不需要额外对齐

结果

Part2 内存布局:ecax|bbbb|dddd|dddd

总结

通过对比 Part1Part2 的内存布局,你会发现两者有很大的不同。如下:

  • Part1:axxx|bbbb|cxxx|xxxx|dddd|dddd|exxx|xxxx
  • Part2:ecax|bbbb|dddd|dddd

仔细一看, Part1 存在许多 Padding。显然它占据了不少空间,那么 Padding 是怎么出现的呢?

通过本文的介绍,可得知是由于不同类型导致需要进行字节对齐,以此保证内存的访问边界

那么也不难理解,为什么 调整结构体内成员变量的字段顺序 就能达到缩小结构体占用大小的疑问了,是因为巧妙地减少了 Padding 的存在。让它们更 “紧凑” 了。这一点对于加深 Go 的内存布局印象和大对象的优化非常有帮

当然了,没什么特殊问题,你可以不关注这一块。但你要知道这块知识点 :smile:

参考


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

安全之美

安全之美

Andy Oram、John Viega / 徐 波、沈晓斌 / 机械工业出版社华章公司 / 2011-4-28 / 65.00元

“这本深思熟虑的论文集(《安全之美》)帮助读者摆脱安全领域闪烁着欺骗光芒的心理恐惧,转而欣赏安全的微妙美感。本书描述了安全的阴和阳,以及引人注目的破坏性和闪亮光辉的建设者之间剑拔弩张的气氛。” ——Gary McGraw,Cigital公司CTO,《Software Security》及其他9本书的作者 大多数人不会太关注安全问题,直到他们的个人或商业系统受到攻击。这种发人深省的现象证......一起来看看 《安全之美》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试