有点不安全却又一亮的 Go unsafe.Pointer

栏目: Go · 发布时间: 5年前

内容简介:在上一篇文章原文地址:在大家学习 Go 的时候,肯定都学过 “Go 的指针是不支持指针运算和转换” 这个知识点。为什么呢?

在上一篇文章 《深入理解 Go Slice》 中,大家会发现其底层数据结构使用了 unsafe.Pointer 。因此想着再介绍一下其关联知识

原文地址: 有点不安全却又一亮的 Go unsafe.Pointer

前言

在大家学习 Go 的时候,肯定都学过 “Go 的指针是不支持指针运算和转换” 这个知识点。为什么呢?

首先,Go 是一门静态语言,所有的变量都必须为标量类型。不同的类型不能够进行赋值、计算等跨类型的操作。那么指针也对应着相对的类型,也在 Compile 的静态类型检查的范围内。同时静态语言,也称为强类型。也就是一旦定义了,就不能再改变它

错误示例

func main(){
    num := 5
    numPointer := &num

    flnum := (*float32)(numPointer)
    fmt.Println(flnum)
}

输出结果:

# command-line-arguments
...: cannot convert numPointer (type *int) to type *float32

在示例中,我们创建了一个 num 变量,值为 5,类型为 int 。取了其对于的指针地址后,试图强制转换为 *float32 ,结果失败...

unsafe

针对刚刚的 “错误示例”,我们可以采用今天的男主角 unsafe 标准库来解决。它是一个神奇的包,在官方的诠释中,有如下概述:

  • 围绕 Go 程序内存安全及类型的操作
  • 很可能会是不可移植的
  • 不受 Go 1 兼容性指南的保护

简单来讲就是,不怎么推荐你使用。因为它是 unsafe(不安全的),但是在特殊的场景下,使用了它。可以打破 Go 的类型和内存安全机制,让你获得眼前一亮的惊喜效果 :smile:

Pointer

为了解决这个问题,需要用到 unsafe.Pointer 。它表示任意类型且可寻址的指针值,可以在不同的指针类型之间进行转换(类似 C 语言的 void * 的用途)

其包含四种核心操作:

  • 任何类型的指针值都可以转换为 Pointer
  • Pointer 可以转换为任何类型的指针值
  • uintptr 可以转换为 Pointer
  • Pointer 可以转换为 uintptr

在这一部分,重点看第一点、第二点。你再想想怎么修改 “错误示例” 让它运行起来?

func main(){
    num := 5
    numPointer := &num

    flnum := (*float32)(unsafe.Pointer(numPointer))
    fmt.Println(flnum)
}

输出结果:

0xc4200140b0

在上述代码中,我们小加改动。通过 unsafe.Pointer 的特性对该指针变量进行了修改,就可以完成任意类型(*T)的指针转换

需要注意的是,这时还无法对变量进行操作或访问。因为不知道该指针地址指向的东西具体是什么类型。不知道是什么类型,又如何进行解析呢。无法解析也就自然无法对其变更了

Offsetof

在上小节中,我们对普通的指针变量进行了修改。那么它是否能做更复杂一点的事呢?

type Num struct{
    i string
    j int64
}

func main(){
    n := Num{i: "EDDYCJY", j: 1}
    nPointer := unsafe.Pointer(&n)

    niPointer := (*string)(unsafe.Pointer(nPointer))
    *niPointer = "煎鱼"

    njPointer := (*int64)(unsafe.Pointer(uintptr(nPointer) + unsafe.Offsetof(n.j)))
    *njPointer = 2

    fmt.Printf("n.i: %s, n.j: %d", n.i, n.j)
}

输出结果:

n.i: 煎鱼, n.j: 2

在剖析这段代码做了什么事之前,我们需要了解结构体的一些基本概念:

  • 结构体的成员变量在内存存储上是一段连续的内存
  • 结构体的初始地址就是第一个成员变量的内存地址
  • 基于结构体的成员地址去计算偏移量。就能够得出其他成员变量的内存地址

再回来看看上述代码,得出执行流程:

  • 修改 n.i 值: i 为第一个成员变量。因此不需要进行偏移量计算,直接取出指针后转换为 Pointer ,再强制转换为字符串类型的指针值即可
  • 修改 n.j 值: j 为第二个成员变量。需要进行偏移量计算,才可以对其内存地址进行修改。在进行了偏移运算后,当前地址已经指向第二个成员变量。接着重复转换赋值即可

需要注意的是,这里使用了如下方法(来完成偏移计算的目标):

1、uintptr: uintptr 是 Go 的内置类型。返回无符号整数,可存储一个完整的地址。后续常用于指针运算

type uintptr uintptr

2、unsafe.Offsetof:返回变量的字节大小,也就是本文用到的偏移量大小。需要注意的是入参 ArbitraryType 表示任意类型,并非定义的 int 。它实际作用是一个占位符

func Offsetof(x ArbitraryType) uintptr

在这一部分,其实就是巧用了 Pointer 的第三、第四点特性。这时候就已经可以对变量进行操作了 :smile:

错误示例

func main(){
    n := Num{i: "EDDYCJY", j: 1}
    nPointer := unsafe.Pointer(&n)
    ...

    ptr := uintptr(nPointer)
    njPointer := (*int64)(unsafe.Pointer(ptr + unsafe.Offsetof(n.j)))
    ...
}

这里存在一个问题, uintptr 类型是不能存储在临时变量中的。因为从 GC 的角度来看, uintptr 类型的临时变量只是一个无符号整数,并不知道它是一个指针地址

因此当满足一定条件后, ptr 这个临时变量是可能被垃圾回收掉的,那么接下来的内存操作,岂不成迷?

总结

简洁回顾两个知识点。第一是 unsafe.Pointer 可以让你的变量在不同的指针类型转来转去,也就是表示为任意可寻址的指针类型。第二是 uintptr 常用于与 unsafe.Pointer 打配合,用于做指针运算,巧妙地很

最后还是那句,没有特殊必要的话。是不建议使用 unsafe 标准库,它并不安全。虽然它常常能让你眼前一亮 :ok_hand:


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Large-Scale Inference

Large-Scale Inference

Bradley Efron / Cambridge University Press / 2010-8-5 / GBP 48.00

We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each ......一起来看看 《Large-Scale Inference》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器