MQ(5) —— Nsq vs Kafka

栏目: 后端 · 发布时间: 6年前

内容简介:正如之前说的,Nsq是一款极简的消息中间件。通过前面几讲对Nsq的学习,我们可以更加轻松的上手其他的Mq。首先,先放上Nsq和Kafka的架构图。

Nsq vs Kafka

正如之前说的,Nsq是一款极简的消息中间件。

通过前面几讲对Nsq的学习,我们可以更加轻松的上手其他的Mq。

这一节,就让我们在对比中,学习另一种Mq,Kafka,在对比中,加深对Mq的理解。

首先,先放上Nsq和Kafka的架构图。

Nsq:

MQ(5) —— Nsq vs Kafka

Kafka:

MQ(5) —— Nsq vs Kafka

在第一篇文章里,我演示了nsq是如何从一条队列,不断的解决各种问题,最后成为一个中间件的。

同样,对于Kafka,它在演化为一个靠谱的中间件的过程中,也需要解决很多类似的问题。

1、如何让一个topic的消息,能够被多个消费者实例消费

在nsq,采用的是channel的方式,而kafka,则是引入了”消费者组“的概念: MQ(5) —— Nsq vs Kafka

2、如何让mq、生产者、消费者能够自动发现对方

我们知道,这需要一个类似于注册中心的中间件,nsq用的是nsqlookup,而kafka则直接采用了zookeeper:

MQ(5) —— Nsq vs Kafka

3、如何实现集群

nsq的集群比较”另类“,让每个生产者自己配套一个nsq,kafka的集群就比较”正常“,正如上面架构图展示的: MQ(5) —— Nsq vs Kafka

另外,在一些实现细节上,两者也有所不同。

1、内存 vs 磁盘

Nsq把消息放到了内存,只有当队列里消息的数量超过 --mem-queue-size 配置的限制时,才会对消息进行持久化。

而Kafka,则直接把消息存储到磁盘中。

存储到磁盘?这样效率岂不是很低?Kafka知道大家有这样的疑虑,因而在它的官方文档里,写了一大段话来平息大家对磁盘存储的”怨恨“: Kafka - Design File System

大概意思是,我们对磁盘的用法做了改进,使得使用磁盘的性能比人们想象中的要快很多,不过里头的原理太过高深,还附上了篇论文,哀家没看懂,就不在这里和大家瞎比比了 …..

Kafka觉得,反正最后也要进行持久化的,与其在内存不足的时候,匆匆忙忙去进行刷盘,不如直接就把数据放进磁盘:

rather than maintain as much as possible in-memory and flush it all out to the filesystem in a panic when we run out of space, we invert that. All data is immediately written to a persistent log on the filesystem without necessarily flushing to disk. In effect this just means that it is transferred into the kernel’s pagecache.

嗯,貌似有点道理,大家有兴趣的话可以点链接进去看看。

2、push vs pull

对于选择push还是pull,这个没有唯一的答案,各有利弊。

push

  • 优点: 延时小 ,几乎可以做到实时
  • 缺点: 消费者端不好做流控 很难做批量推送,不知道要推送多少合适
  • 解决思路:参考MQ(3)—— 刨根问底里头讲的nsq的流控策略

pull

  • 优点:消费者可以自己把握节奏
  • 缺点:
    • 延时大
    • 消费者可能经常有空pull ,即pull不到消息,造成浪费
  • 解决思路:Kafka采用的是 阻塞式pull
To avoid this we have parameters in our pull request that allow the consumer request to block in a “long poll” waiting until data arrives

Kafka同样写了一大段文章,来解释他们为什么要采用pull: Kafka: Push vs Pull

3、数据备份

Nsq只把消息存储到一台机器中,不做任何备份,一旦机器奔溃,磁盘损坏,消息就永久丢失了。

Kafka则通过partition的机制,对消息做了备份,增强了消息的安全性。

4、无序 vs 支持有序

Nsq不支持顺序消费,原因已经在之前提过:

比如说channel A里现在有两条消息,M1和M2,M1先产生,M2后产生,channel A分别将M1和M2推送给了消费者 C1和C2,那么有可能C1比C2先处理完消息,这样是有序的;但也有可能,C2先处理了,这样M2就比M1先被处理,这样就是无序的。

而Kafka则支持顺序消费,具体可以参考 Kafka: Ordering Messege

要使用Kafka的顺序消费功能,必须满足几个条件:

  • 要被顺序消费的消息,必须都放到一个partition里面
  • partition只能被消费者组里的一个消费者实例消费

比如,topic A的消息 都要顺序消费,那么topic A只允许有一个partition;

又比如,topic A的消息里面,userId相同的消息,要被顺序消费,那么就要根据userId字段做hash,保证相同userId的消息,去到同一个partition。

5、消息投递语义

之前说过,消息投递语义(Message Delivery Semantics)有三种:

  • 最多一次(At most once)
  • 至少一次(At least once)
  • 准确一次(Exactly once)

Nsq只支持至少一次,也就是说,消息有可能被多次投递,消费者必须自己保证消息处理的幂等性。

而Kafka则支持准确一次,具体可以参考下面两篇文章:

小结

这篇文章,通过Nsq和Kafka的对比,讲解了一些Kafka的特性,如果读者想对Kafka有进一步了解,不妨看看我之前写的一篇Kafka简明教程

同时,我们也看到了相比于Nsq,Kafka更加强大,弥补了Nsq的一些“缺点”,而有赞也借鉴了Kafka的实现思路,对Nsq进行了自研开发,下一讲就一起来看看有赞是如何对Nsq进行改进的。

参考


以上所述就是小编给大家介绍的《MQ(5) —— Nsq vs Kafka》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

PHP和MySQL Web开发(原书第4版)

PHP和MySQL Web开发(原书第4版)

Luke Welling、Laura Thomson / 武欣 / 机械工业出版社 / 2009 / 95.00元

本书将PHP开发与MySQL应用相结合,分别对PHP和MySQL做了深入浅出的分析,不仅介绍PHP和MySQL的一般概念,而且对PHP和MySQL的Web应用做了较全面的阐述,并包括几个经典且实用的例子。. 本书是第4版,经过了全面的更新、重写和扩展,包括PHP 5.3最新改进的特性(例如,更好的错误和异常处理),MySQL的存储过程和存储引擎,Ajax技术与Web 2.0以及Web应用需要......一起来看看 《PHP和MySQL Web开发(原书第4版)》 这本书的介绍吧!

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换