内容简介:Java的异步编程是一项非常常用的多线程技术。之前通过源码详细分析了ThreadPoolExecutor但之前的任务主要倾向于线程池,并没有讲到异步编程方面的内容。本文将通过介绍Executor+Future框架(FutureTask是实现的核心),来深入了解下Java的异步编程。
Java的异步编程是一项非常常用的多线程技术。
之前通过源码详细分析了ThreadPoolExecutor 《你真的懂ThreadPoolExecutor线程池技术吗?看了源码你会有全新的认识》 。通过创建一个ThreadPoolExecutor,往里面丢任务就可以实现多线程异步执行了。
但之前的任务主要倾向于线程池,并没有讲到异步编程方面的内容。本文将通过介绍Executor+Future框架(FutureTask是实现的核心),来深入了解下 Java 的异步编程。
万事从示例开始,我们先通过示例Demo有一个直观的印象,再深入去了解概念与原理。
使用示例
使用上比较简单,
运行结果:
任务1异步执行:0 任务2异步执行:0 任务2异步执行:1 ... 任务2异步执行:45 同步代码 任务2异步执行:24 ... 任务1异步执行:199 任务1:执行完成 ... 任务2异步执行:199 任务2:执行完成
假若你多次执行这个程序,会发现结果大大的不一样,因为两个任务和同步代码是异步由多条线程执行的,打印的结果当然是随机的。
回顾这个Demo做了什么,
- 构建了一个线程池
- 往线程池里面丢两个需要执行的任务
- 最后获取这两个任务的结果
其中第二点是异步执行两个任务,这两个任务和主线程分别是用了三个线程并发执行的,第三点是在主线程中同步等待两个任务的结果。
很容易看出来,异步编程的好处就在于可以让不相干的任务异步执行,不阻塞主线程。若是主线程需要异步执行的结果,此时再去等待结果会更加高效,提高程序的执行效率。
下面来看看整个流程的实现原理。
源码分析
一般在实际项目中,都会有配置有自己的线程池,建议大家在用异步编程时,配置一个专用的线程池,做好线程隔离,避免异步线程影响到其他模块的工作。Demo中为了方便,直接调用Exectors的方法生成一个临时的线程池,日常不建议使用。
我们从这个 ExecutorService.submit()
方法入手,看看整体实现。
ExecutorService.submit()
定义一个接口。这个接口接收一个Callable参数(执行的任务),返回一个Future(计算结果)。
Callable
,相当于一个需要执行的任务。它不接收任何参数,可以返回结果,可以抛出异常。相类似的还有 Runnable
,它也是不接收,不同点在于它不返回结果,也不抛异常,异常需要在任务内部处理。总结来说 Callable
更像一个方法的调用, Runnable
则是一个不需要理会结果的调用。在JDK 8以后,它们都可以通过Lamda表达式写法去替代内部类的写法(详见Demo)。
Future
,一个异步计算的结果。调用 get()
方法可以得到对应的计算结果,如果调用时没有异步计算完,会阻塞等待计算的结果。同时它还提供方法可以尝试取消任务的执行。
看回 ExecutorService.submit()
的实现,代码在实现类 AbstractExecutorService
中。
除了它接口的实现,还提供了两种变形。原来接口只接收 Callable
参数,实现类中还新增了接收 Runnable
参数的。
如果看过之前写的 《你真的懂ThreadPoolExecutor线程池技术吗?看了源码你会有全新的认识》 ,应该了解 ThreadPoolExecutor
执行任务是可以调用 execute()
方法的。而这里面 submit()
方法则是为 Callable/Runnable
加多一层 FutureTask
,从而 使执行结果有一个存放的地方,同时也添加一个可以取消的功能。原本的 execute()
只能执行任务,不会返回结果的,具体实现原理可以看看之前的文章分析。
FutureTask
是 RunnableFuture
的实现。而 RunnableFuture
是继承 Future
和 Runnable
接口的,定义 run()
接口。
因为 FutureTask
有 run()
接口,所以可以直接用一个 Callable/Runnable
创建一个 FutureTask
单独执行。但这样并没有异步的效果,因为没有启用新的线程去跑,而是在原来的线程阻塞执行的。
到这里我们清楚知道了, submit()
方法重点是利用 Callable/Runnable
创建一个 FutureTask
,然后多线程执行 run()
方法,达到异步处理并且得到结果的效果。而 FutureTask
的重点则是 run()
方法如何持有保存计算的结果。
FutureTask.run()
首先判断 futureTask
对象的 state
状态,如果不是NEW的话,证明已经开始运行过了,则退出执行。同时 futureTask
对象通过CAS,把当前线程赋值给变量 runner
(是Thread类型,说明对象使用哪个线程执行的),如果CAS失败则退出。
外层 try{}
代码块中,对 callable
判空和 state
状态必须是NEW。内层 try{}
代码真正调用 callable
,开始执行任务。若执行成功,则把 ran
变量设为true,保存结果在 result
变量中,证明已跑成功过了;若抛异常了,则设为false, result
为空,并且调用 setException()
保存异常。最后如果 ran
为true的话,则调用 set()
保存 result
结果。
看下 setException()
和 set()
的实现。
两者的基本流程一样,CAS置换状态,保存结果在 outcome
变量道中,但 setException()
保存的结果类型固定是 Throwable
。另外一个不同在于最终 state
状态,一个是EXCEPTION,一个是NORMAL。
这两个方法最后都调用了 finishCompletion()
。这个方法主要是配合线程池唤醒下一个任务。
FutureTask.get()
从上面 run()
方法得知,最后执行的结果放在了 outcome
变量中。那最终怎么从其中取出结果来,我们来看看 get()
方法。
从源码可知, get()
方法分两步。第一步,先判断状态,如果计算为完成,则需要阻塞地等待完成。第二步,如果完成了,则调用 report()
方法获取结果并返回。
先看看 awaitDone()
阻塞等待完成。该方法可以选用超时功能。
在自旋的for()循环中,
- 先判断是否线程被中断,中断的话抛异常退出。
- 然后开始判断运行的
state
值,如果state
大于COMPLETING
,证明计算已经是终态了,此时返回终态变量。 - 若
state
等于COMPLETING
,证明已经开始计算,并且还在计算中。此时为了避免过多的CPU时间放在这个for循环的自旋上,程序执行Thread.yield()
,把线程从运行态降为就绪态,让出CPU时间。 - 若以上状态都不是,则证明
state
为NEW
,还没开始执行。那么程序在当前循环现在会新增一个WaitNode
,在下一个循环里面调用LockSupport.park()
把当前线程阻塞。当run()
方法结束的时候,会再次唤醒此线程,避免自旋消耗CPU时间。 - 如果选用了超时功能,在阻塞和自旋过程中超时了,则会返回当前超时的状态。
第二步的 report()
方法比较简单。
- 如果状态是
NORMAL
,正常结束的话,则把outcome
变量返回; - 如果是取消或者中断状态的,则抛出取消异常;
- 如果是
EXCEPTION
,则把outcome
当作异常抛出(之前setException()
保存的类型就是Throwable
)。从而整个get()
会有一个异常抛出。
总结
至此我们已经比较完整地了解Executor+Future的框架原理了,而FutureTask则是该框架的主要实现。下面总结下要点
-
Executor.sumbit()
方法异步执行一个任务,并且返回一个Future结果。 -
submit()
的原理是利用Callable
创建一个FutureTask
对象,然后执行对象的run()
方法,把结果保存在outcome
中。 - 调用
get()
获取outcome
时,如果任务未完成,会阻塞线程,等待执行完毕。 - 异常和正常结果都放在
outcome
中,调用get()
获取结果或抛出异常。
更多技术文章、精彩干货,请关注 博客:zackku.com 公众号:Zack说码
以上所述就是小编给大家介绍的《原 荐 Java异步编程——深入源码分析FutureTask》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- jQuery源码学习:异步操作--Callbacks
- JStorm 源码分析 - 异步循环线程 AsyncLoopThread
- YYText 源码剖析:CoreText 与异步绘制
- React Fiber源码分析 第三篇(异步状态)
- corefx 源码学习:NetworkStream.ReadAsync 是如何从 Socket 异步读取数据的
- SpringBoot | :异步开发之异步调用
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。