MQ(6) —— Nsq vs Kafka

栏目: 后端 · 发布时间: 6年前

内容简介:正如之前说的,Nsq是一款极简的消息中间件,通过学习Nsq,我们可以通过对比的方式,学习其他的Mq。这一节,就让我们在对比中,学习另一种Mq,Kafka,在对比中,加深对Mq的理解。首先,先放上这两者的架构图。

Nsq vs Kafka

正如之前说的,Nsq是一款极简的消息中间件,通过学习Nsq,我们可以通过对比的方式,学习其他的Mq。

这一节,就让我们在对比中,学习另一种Mq,Kafka,在对比中,加深对Mq的理解。

首先,先放上这两者的架构图。

Nsq:

MQ(6) —— Nsq vs Kafka

Kafka:

MQ(6) —— Nsq vs Kafka

在第一篇文章里,我演示了nsq是如何从一条队列,不断的解决各种问题,最后成为一个中间件的。

同样,对于Kafka,它在演化为一个靠谱的中间件的过程中,也需要解决很多类似的问题。

1、如何让一个topic的消息,能够被多个消费者实例消费

在nsq,采用的是channel的方式,而kafka,则是引入了”消费者组“的概念: MQ(6) —— Nsq vs Kafka

2、如何让mq、生产者、消费者能够自动发现对方

我们知道,这需要一个类似于注册中心的中间件,nsq用的是nsqlookup,而kafka则直接采用了zookeeper:

MQ(6) —— Nsq vs Kafka

3、如何实现集群

nsq的集群比较”另类“,让每个生产者自己配套一个nsq,kafka的集群就比较”正常“,正如上面架构图展示的: MQ(6) —— Nsq vs Kafka

另外,在一些实现细节上,两者也有所不同。

1、内存 vs 磁盘

Nsq把消息放到了内存,只有当队列里消息的数量超过 --mem-queue-size 配置的限制时,才会对消息进行持久化。

而Kafka,则直接把消息存储到磁盘中。

存储到磁盘?这样效率岂不是很低?Kafka知道大家有这样的疑虑,因而在它的官方文档里,写了一大段话来平息大家对磁盘存储的”怨恨“: Kafka - Design File System

大概意思是,我们对磁盘的用法做了改进,使得使用磁盘的性能比人们想象中的要快很多,不过里头的原理太过高深,还附上了篇论文,哀家没看懂,就不在这里和大家瞎比比了 …..

Kafka觉得,反正最后也要进行持久化的,与其在内存不足的时候,匆匆忙忙去进行刷盘,不如直接就把数据放进磁盘:

rather than maintain as much as possible in-memory and flush it all out to the filesystem in a panic when we run out of space, we invert that. All data is immediately written to a persistent log on the filesystem without necessarily flushing to disk. In effect this just means that it is transferred into the kernel’s pagecache.

嗯,貌似有点道理,大家有兴趣的可以点链接进去看看。

2、push vs pull

对于选择push还是pull,这个没有一个唯一的答案,各有利弊。

push

  • 优点:延时小,几乎可以做到实时
  • 缺点:消费者端不好做流控 很难做批量推送,不知道要推送多少合适
  • 解决思路:参考之前文章讲的nsq的流控策略

pull

  • 优点:消费者可以自己把握节奏
  • 缺点:
    • 延时大
    • 消费者可能经常有空pull,即pull不到消息,造成浪费
  • 解决思路:Kafka采用的是阻塞式pull
To avoid this we have parameters in our pull request that allow the consumer request to block in a “long poll” waiting until data arrives

Kafka同样写了一大段文章,来解释他们为什么要采用pull: Kafka: Push vs Pull

3、数据备份

Nsq只把消息存储到一台机器中,不做任何备份,一旦机器奔溃,磁盘损坏,消息就永久丢失了,Kafka则通过partition的机制,对消息做了备份,增强了消息的安全性。

4、无序 vs 支持有序

Nsq不支持顺序消费,原因已经在之前提过:

比如说channel A里现在有两条消息,M1和M2,M1先产生,M2后产生,channel A分别将M1和M2推送给了消费者 C1和C2,那么有可能C1比C2先处理完消息,这样是有序的;但也有可能,C2先处理了,这样M2就比M1先被处理,这样就是无序的。

而Kafka则支持顺序消费,具体可以参考 Kafka: Ordering Messege

要使用Kafka的顺序消费功能,必须满足几个条件:

  • 要被顺序消费的消息,必须都放到一个partition里面
  • partition只能被消费者组里的一个消费者实例消费

比如,topic A的消息 都要顺序消费,那么topic A只允许有一个partition;

又比如,topic A的消息里面,userId相同的消息,要被顺序消费,那么就要根据userId字段做hash,保证相同userId的消息,去到同一个partition。

5、消息投递语义

之前说过,消息投递语义(Message Delivery Semantics)有三种:

  • 最多一次(At most once)
  • 至少一次(At least once)
  • 准确一次(Exactly once)

Nsq只支持至少一次,也就是说,消息有可能被多次投递,消费者必须自己保证消息处理的幂等性。

而Kafka则支持准确一次,具体可以参考下面两篇文章:


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

引爆点

引爆点

[美] 马尔科姆·格拉德威尔 / 钱清、覃爱冬 / 中信出版社 / 2006-1 / 29.80元

这本书是《纽约客》杂志专职作家马尔科姆·格拉德威尔的一部才华横溢之作。他以社会上突如其来的流行风潮研究为切入点,从一个全新的角度探索了控制科学和营销模式。他认为,思想、行为、信息以及产品常常会像传染病爆发一样,迅速传播蔓延。正如一个病人就能引起一场全城流感;如果个别工作人员对顾客大打出手,或几位涂鸦爱好者管不住自己,也能在地铁里掀起一场犯罪浪潮;一位满意而归的顾客还能让新开张的餐馆座无虚席。这些现......一起来看看 《引爆点》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

MD5 加密
MD5 加密

MD5 加密工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具