HTTPS通信原理剖析

栏目: 编程工具 · 发布时间: 6年前

内容简介:1、公钥密码体制(public-key cryptography)公钥密码体制分为三个部分,公钥、私钥、加密解密算法,它的加密解密过程如下:公钥密码体制的公钥和算法都是公开的(这是为什么叫公钥密码体制的原因),私钥是保密的。大家都以使用公钥进行加密,但是只有私钥的持有者才能解密。在实际的使用中,有需要的人会生成一对公钥和私钥,把公钥发布出去给别人使用,自己保留私钥。

一、基本概念

1、公钥密码体制(public-key cryptography)

公钥密码体制分为三个部分,公钥、私钥、加密解密算法,它的加密解密过程如下:

  • 加密:通过加密算法和公钥对内容(或者说明文)进行加密,得到密文。加密过程需要用到公钥。
  • 解密:通过解密算法和私钥对密文进行解密,得到明文。解密过程需要用到解密算法和私钥。注意,由公钥加密的内容,只能由私钥进行解密,也就是说,由公钥加密的内容,如果不知道私钥,是无法解密的。

公钥密码体制的公钥和算法都是公开的(这是为什么叫公钥密码体制的原因),私钥是保密的。大家都以使用公钥进行加密,但是只有私钥的持有者才能解密。在实际的使用中,有需要的人会生成一对公钥和私钥,把公钥发布出去给别人使用,自己保留私钥。

2、对称加密算法(symmetric key algorithms)

在对称加密算法中,加密使用的密钥和解密使用的密钥是相同的。也就是说,加密和解密都是使用的同一个密钥。因此对称加密算法要保证安全性的话,密钥要做好保密,只能让使用的人知道,不能对外公开。这个和上面的公钥密码体制有所不同,公钥密码体制中加密是用公钥,解密使用私钥,而对称加密算法中,加密和解密都是使用同一个密钥,不区分公钥和私钥。

3、非对称加密算法(asymmetric key algorithms)

在非对称加密算法中,加密使用的密钥和解密使用的密钥是不相同的。前面所说的公钥密码体制就是一种非对称加密算法,他的公钥和是私钥是不能相同的,也就是说加密使用的密钥和解密使用的密钥不同,因此它是一个非对称加密算法。

4、RSA简介

RSA密码体制是一种公钥密码体制,公钥公开,私钥保密,它的加密解密算法是公开的。 由公钥加密的内容可以并且只能由私钥进行解密,并且由私钥加密的内容可以并且只能由公钥进行解密。也就是说,RSA的这一对公钥、私钥都可以用来加密和解密,并且一方加密的内容可以由并且只能由对方进行解密。

5、签名和加密

我们说加密,是指对某个内容加密,加密后的内容还可以通过解密进行还原。 比如我们把一封邮件进行加密,加密后的内容在网络上进行传输,接收者在收到后,通过解密可以还原邮件的真实内容。

这里主要解释一下签名,签名就是在信息的后面再加上一段内容,可以证明信息没有被修改过,怎么样可以达到这个效果呢?一般是对信息做一个hash计算得到一个hash值(hash不可逆)。在把信息发送出去时,把这个hash值加密后做为一个签名和信息一起发出去。 接收方在收到信息后,会重新计算信息的hash值,并和信息所附带的hash值(解密后)进行对比,如果一致,就说明信息的内容没有被修改过,因为这里hash计算可以保证不同的内容一定会得到不同的hash值,所以只要内容一被修改,根据信息内容计算的hash值就会变化。当然,不怀好意的人也可以修改信息内容的同时也修改hash值,从而让它们可以相匹配,为了防止这种情况,hash值一般都会加密后(也就是签名)再和信息一起发送,以保证这个hash值不被修改。至于如何让别人可以解密这个签名,这个过程涉及到数字证书等概念,我们后面在说到数字证书时再详细说明,这里您先只需先理解签名的这个概念。

二、加密通信演练

假设“服务器”和“客户”要在网络上通信,并且他们打算使用RSA来对通信进行加密以保证谈话内容的安全。由于是使用RSA这种公钥密码体制,“服务器”需要对外发布公钥(算法不需要公布,RSA的算法大家都知道),自己留着私钥。“客户”通过某些途径拿到了“服务器”发布的公钥,客户并不知道私钥。“客户”具体是通过什么途径获取公钥的,我们后面再来说明,下面看一下双方如何进行保密的通信:

1、场景一

HTTPS通信原理剖析

如上图所示,如果有人截获客户与服务器的信息,冒充自己是服务器,将会出现如下图所示情况。

HTTPS通信原理剖析

因此“客户”在接到消息后,并不能肯定这个消息就是由“服务器”发出的,某些“黑客”也可以冒充“服务器”发出这个消息。如何确定信息是由“服务器”发过来的呢?有一个解决方法,因为只有服务器有私钥,所以如果只要能够确认对方有私钥,那么对方就是“服务器”。因此通信过程可以改进为如下:

2、场景二

HTTPS通信原理剖析

注意:{} 表示RSA加密后的内容,[ | ]表用什么密钥和算法进行加密,后面的示例中都用这种表示方式,例如上面的 {XXX}[私钥|RSA]  就表示用私钥对“Hello, I’m server”进行加密后的结果。

为了向“客户”证明自己是“服务器”, “服务器”把一个字符串用自己的私钥加密,把明文和加密后的密文一起发给“客户”。对于这里的例子来说,就是把字符串 “Hello, I’m server”和这个字符串用私钥加密后的内容 {XXX}[私钥|RSA] 发给客户。

“客户”收到信息后,用自己持有的公钥解密密文,和明文进行对比,如果一致,说明信息的确是由服务器发过来的。也就是说“客户”把 {XXX}[私钥|RSA] 这个内容用公钥进行解密,然后和“Hello, I’m server”对比。因为由“服务器”用私钥加密后的内容,由并且只能由公钥进行解密,私钥只有“服务器”持有,所以如果解密出来的内容是能够对得上的,那说明信息一定是从“服务器”发过来的。

假设“黑客”想冒充“服务器”,会发生如下会话:

HTTPS通信原理剖析

在上述第四步 {###}[***|RSA],这里黑客无法冒充,因为他不知道私钥,无法用私钥加密某个字符串后发送给客户去验证。

由于“黑客”没有“服务器”的私钥,因此它发送过去的内容,“客户”是无法通过服务器的公钥解密的,因此可以认定对方是个冒牌货!

到这里为止,“客户”就可以确认“服务器”的身份了,可以放心和“服务器”进行通信,但是这里有一个问题,通信的内容在网络上还是无法保密。为什么无法保密呢?通信过程不是可以用公钥、私钥加密吗?其实用RSA的私钥和公钥是不行的,我们来具体分析下过程,看下面的场景:

3、场景三

HTTPS通信原理剖析

注意上面的的信息 {money=100}[私钥],这个是“服务器”用私钥加密后的内容,但是我们之前说了,公钥是发布出去的,因此所有的人都知道公钥,所以除了“客户”,其它的人也可以用公钥对{money=100}[私钥]进行解密。所以如果“服务器”用私钥加密发给“客户”,这个信息是无法保密的,因为只要有公钥就可以解密这内容。然而“服务器”也不能用公钥对发送的内容进行加密,因为“客户”没有私钥,发送个“客户”也解密不了。

这样问题就又来了,那又如何解决呢?在实际的应用过程,一般是通过引入对称加密来解决这个问题,看下面的场景:

4、场景四

HTTPS通信原理剖析

在上面的通信过程中,“客户”在确认了“服务器”的身份后,“客户”自己选择一个对称加密算法和一个密钥,把这个对称加密算法和密钥一起用公钥加密后发送给“服务器”。注意,由于对称加密算法和密钥是用公钥加密的,就算这个加密后的内容被“黑客”截获了,由于没有私钥,“黑客”也无从知道对称加密算法和密钥的内容。

由于是用公钥加密的,只有私钥能够解密,这样就可以保证只有服务器可以知道对称加密算法和密钥,而其它人不可能知道(这个对称加密算法和密钥是“客户”自己选择的,所以“客户”自己当然知道如何解密加密)。这样“服务器”和“客户”就可以用对称加密算法和密钥来加密通信的内容了。

总结一下,RSA加密算法在这个通信过程中所起到的作用主要有两个:

  • 因为私钥只有“服务器”拥有,因此“客户”可以通过判断对方是否有私钥来判断对方是否是“服务器”。
  • 客户端通过RSA的掩护,安全的和服务器商量好一个对称加密算法和密钥来保证后面通信过程内容的安全。

但是这里还留有一个问题,在最开始我们就说过,“服务器”要对外发布公钥,那“服务器”如何把公钥发送给“客户”呢?我们第一反应可能会想到以下的两个方法:

a)把公钥放到互联网的某个地方的一个下载地址,事先给“客户”去下载。

b)每次和“客户”开始通信时,“服务器”把公钥发给“客户”。

但是这个两个方法都有一定的问题,

对于a)方法,“客户”无法确定这个下载地址是不是“服务器”发布的,你凭什么就相信这个地址下载的东西就是“服务器”发布的而不是别人伪造的呢,万一下载到一个假的怎么办?另外要所有的“客户”都在通信前事先去下载公钥也很不现实。

对于b)方法,也有问题,因为任何人都可以自己生成一对公钥和私钥,他只要向“客户”发送他自己的私钥就可以冒充“服务器”了。示意如下:

HTTPS通信原理剖析

如上场景“黑客”只需要自己生成一对公钥和私钥,然后把公钥发送给“客户”,自己保留私钥,这样由于“客户”可以用黑客的公钥解密黑客的私钥加密的内容,“客户”就会相信“黑客”是“服务器”,从而导致了安全问题。这里问题的根源就在于,大家都可以生成公钥、私钥对,无法确认公钥对到底是谁的。 如果能够确定公钥到底是谁的,就不会有这个问题了。例如,如果收到“黑客”冒充“服务器”发过来的公钥,经过某种检查,如果能够发现这个公钥不是“服务器”的就好了。

为了解决这个问题,数字证书出现了,它可以解决我们上面的问题。一个证书包含下面的具体内容:

  • 证书的发布机构
  • 证书的有效期
  • 公钥
  • 证书所有者(Subject)
  • 签名所使用的算法
  • 指纹以及指纹算法

证书的内容的详细解释会在后面详细解释,这里先只需要搞清楚一点,数字证书可以保证数字证书里的公钥确实是这个证书的所有者(Subject)的,或者证书可以用来确认对方的身份。也就是说,我们拿到一个数字证书,我们可以判断出这个数字证书到底是谁的。至于是如何判断的,后面会在详细讨论数字证书时详细解释。现在把前面的通信过程使用数字证书修改为如下场景:

5、场景五

HTTPS通信原理剖析

注意,上面第二次通信,“服务器”把自己的证书发给了“客户”,而不是发送公钥。“客户”可以根据证书校验这个证书到底是不是“服务器”的,也就是能校验这个证书的所有者是不是“服务器”,从而确认这个证书中的公钥的确是“服务器”的。后面的过程和以前是一样,“客户”让“服务器”证明自己的身份,“服务器”用私钥加密一段内容连同明文一起发给“客户”,“客户”把加密内容用数字证书中的公钥解密后和明文对比,如果一致,那么对方就确实是“服务器”,然后双方协商一个对称加密来保证通信过程的安全。

6、完成场景

HTTPS通信原理剖析

7、场景完善(可忽略)

由于上述场景中存在一些遗漏,需要完善,具体内容见下文:

  • 每次收到“客户”发来的要加密的的字符串时,“服务器”并不是真正的加密这个字符串本身,而是把这个字符串进行一个hash计算,加密这个字符串的hash值(不加密原来的字符串)后发送给“客户”,“客户”收到后解密这个hash值并自己计算字符串的hash值然后进行对比是否一致。也就是说,“服务器”不直接加密收到的字符串,而是加密这个字符串的一个hash值,这样就避免了加密那些有规律的字符串,从而降低被破解的机率。“客户”自己发送的字符串,因此它自己可以计算字符串的hash值,然后再把“服务器”发送过来的加密的hash值和自己计算的进行对比,同样也能确定对方是否是“服务器”。
  • 为了防止“黑客”在双方的通信过程中把信息原封不动的发送多次,扰乱通信过程(“黑客”可以截获发送的加密了的内容,但他无法解密这个内容)。可以给通信的内容加上一个序号或者一个随机的值,如果“客户”或者“服务器”接收到的信息中有之前出现过的序号或者随机值,那么说明有人在通信过程中重发信息内容进行捣乱,双方会立刻停止通信。
  • 为防止“黑客”修改截获后的密文修改后再发送。“客户”和“服务器”是无法判断密文是否被修改的。因此在每次发送信息时,先对信息的内容进行一个hash计算得出一个hash值,将信息的内容和这个hash值一起加密后发送。接收方在收到后进行解密得到明文的内容和hash值,然后接收方再自己对收到信息内容做一次hash计算,与收到的hash值进行对比看是否匹配,如果匹配就说明信息在传输过程中没有被修改过。如果不匹配说明中途有人故意对加密数据进行了修改,立刻中断通话过程后做其它处理。

HTTPS通信原理剖析

三、证书的构成和原理

1、证书的构成和原理

a)、windows上证书查看

以ie和360为例,设置中找到Internet选项(360在 工具 中),如下图:

HTTPS通信原理剖析

选择内容、证书,如下图:

HTTPS通信原理剖析

由于之前添加的自己生成的证书在受信任的根证书颁发机构内,选择该证书,点击查看:

HTTPS通信原理剖析

在windows下查看一个证书,本证书是一个自己生成的证书,我们主要关注一下Details Tab页(详细信息内容),证书的主要内容包含以下(查看了其他的证书,发现详细信息内容会比较多):

HTTPS通信原理剖析

HTTPS通信原理剖析

查找网上资料对几个重要的解释一下。

◆Issuer (证书的发布机构)

指出是什么机构发布的这个证书,也就是指明这个证书是哪个公司创建的(只是创建证书,不是指证书的使用者)。对于上面的这个证书来说,就是指”SecureTrust CA”这个机构。

◆Valid from , Valid to (证书的有效期)

也就是证书的有效时间,或者说证书的使用期限。 过了有效期限,证书就会作废,不能使用了。

◆Public key (公钥)

这个我们在前面介绍公钥密码体制时介绍过,公钥是用来对消息进行加密的,第2章的例子中经常用到的。这个数字证书的公钥是2048位的,它的值可以在图的中间的那个对话框中看得到,是很长的一串数字。

◆Subject (主题)

这个证书是发布给谁的,或者说证书的所有者,一般是某个人或者某个公司名称、机构的名称、公司网站的网址等。 对于这里的证书来说,证书的所有者是Trustwave这个公司。

◆Signature algorithm (签名所使用的算法)

就是指的这个数字证书的数字签名所使用的加密算法,这样就可以使用证书发布机构的证书里面的公钥,根据这个算法对指纹进行解密。指纹的加密结果就是数字签名(第1.5节中解释过数字签名)。

◆Thumbprint, Thumbprint algorithm (指纹(hash值)以及指纹算法(hash算法))

这个是用来保证证书的完整性的,也就是说确保证书没有被修改过,这东西的作用和2.7中说到的第3个问题类似。 其原理就是在发布证书时,发布者根据指纹算法(一个hash算法)计算整个证书的hash值(指纹)并和证书放在一起,使用者在打开证书时,自己也根据指纹算法计算一下证书的hash值(指纹),如果和刚开始的值对得上,就说明证书没有被修改过,因为证书的内容被修改后,根据证书的内容计算的出的hash值(指纹)是会变化的。 注意,这个指纹会使用”SecureTrust CA”这个证书机构的私钥用签名算法(Signature algorithm)加密后和证书放在一起。

b)、mac上chrome证书查看

具体内容不在赘述,如下图所示

HTTPS通信原理剖析

HTTPS通信原理剖析

HTTPS通信原理剖析

注意,为了保证安全,在证书的发布机构发布证书时,证书的指纹和指纹算法,都会加密后再和证书放到一起发布,以防有人修改指纹后伪造相应的数字证书。这里问题又来了,证书的指纹和指纹算法用什么加密呢?他们是用证书发布机构的私钥进行加密的。可以用证书发布机构的公钥对指纹和指纹算法解密,也就是说证书发布机构除了给别人发布证书外,他自己本身也有自己的证书。证书发布机构的证书是哪里来的呢???这个证书发布机构的数字证书(一般由他自己生成)在我们的操作系统刚安装好时(例如windows xp等操作系统),这些证书发布机构的数字证书就已经被微软(或者其它操作系统的开发机构)安装在操作系统中了,微软等公司会根据一些权威安全机构的评估选取一些信誉很好并且通过一定的安全认证的证书发布机构,把这些证书发布机构的证书默认就安装在操作系统里面了,并且设置为操作系统信任的数字证书。这些证书发布机构自己持有与他自己的数字证书对应的私钥,他会用这个私钥加密所有他发布的证书的指纹作为数字签名。

2、如何向证书的发布机构去申请证书

举个例子方便大家理解,假设我们公司”dong Company”花了1000块钱,向一个证书发布机构”SecureTrust CA”为我们自己的公司”dong Company”申请了一张证书,注意,这个证书发布机构”SecureTrust CA”是一个大家公认并被一些权威机构接受的证书发布机构,我们的操作系统里面已经安装了”SecureTrust CA”的证书。”SecureTrust CA”在给我们发布证书时,把Issuer,Public key,Subject,Valid from,Valid to等信息以明文的形式写到证书里面,然后用一个指纹算法计算出这些数字证书内容的一个指纹,并把指纹和指纹算法用自己的私钥进行加密,然后和证书的内容一起发布,同时”SecureTrust CA”还会给一个我们公司”dong Company”的私钥给到我们。我们花了1000块钱买的这个证书的内容如下:

×××××××××××××××证书内容开始×××××××××××××××××

Issuer : SecureTrust CA

Subject : dong Company

Valid from : 某个日期

Valid to: 某个日期

Public Key : 一串很长的数字

…… 其它的一些证书内容……

{证书的指纹和计算指纹所使用的指纹算法}[SecureTrust CA的私钥|RSA]      //这个就是”SecureTrust CA”对这个证书的一个数字签名,表示这个证书确实是他发布的,有什么问题他会负责(收了我们1000块,出了问题肯定要负责任的)

×××××××××××××××证书内容结束×××××××××××××××××

// 前面的约定{} 表示RSA加密后的内容,[ | ]表示用什么密钥和算法进行加密

我们”dong Company”申请到这个证书后,我们把证书投入使用,我们在通信过程开始时会把证书发给对方,对方如何检查这个证书的确是合法的并且是我们”dong Company”公司的证书呢?

首先应用程序(对方通信用的程序,例如IE、OUTLook等)读取证书中的Issuer(发布机构)为”SecureTrust CA” ,然后会在操作系统中受信任的发布机构的证书中去找”SecureTrust CA”的证书,如果找不到,那说明证书的发布机构是个水货发布机构,证书可能有问题,程序会给出一个错误信息。 如果在系统中找到了”SecureTrust CA”的证书,那么应用程序就会从证书中取出”SecureTrust CA”的公钥,然后对我们”dong Company”公司的证书里面的指纹和指纹算法用这个公钥进行解密,然后使用这个指纹算法计算”dong Company”证书的指纹,将这个计算的指纹与放在证书中的指纹对比,如果一致,说明”dong Company”的证书肯定没有被修改过并且证书是”SecureTrust CA” 发布的,证书中的公钥肯定是”dong Company”的。对方然后就可以放心的使用这个公钥和我们”dong Company”进行通信了。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Practical JavaScript, DOM Scripting and Ajax Projects

Practical JavaScript, DOM Scripting and Ajax Projects

Frank Zammetti / Apress / April 16, 2007 / $44.99

http://www.amazon.com/exec/obidos/tg/detail/-/1590598164/ Book Description Practical JavaScript, DOM, and Ajax Projects is ideal for web developers already experienced in JavaScript who want to ......一起来看看 《Practical JavaScript, DOM Scripting and Ajax Projects》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具