内容简介:Swoole 源码分析——Reactor 模块之 ReactorEpoll
Epoll
对象的创建
- 在
linux
中,最为高效的reactor
机制就是epoll
。swReactor
的object
会存储epoll
的对象swReactorEpoll_s
。该数据结构中epfd
是epoll
的id
,events
用于在epoll_wait
函数接受就绪的事件。 - 该函数最重要的是
epoll_create
,该函数会创建epoll
对象
typedef struct swReactorEpoll_s swReactorEpoll;
struct swReactorEpoll_s
{
int epfd;
struct epoll_event *events;
};
int swReactorEpoll_create(swReactor *reactor, int max_event_num)
{
//create reactor object
swReactorEpoll *reactor_object = sw_malloc(sizeof(swReactorEpoll));
if (reactor_object == NULL)
{
swWarn("malloc[0] failed.");
return SW_ERR;
}
bzero(reactor_object, sizeof(swReactorEpoll));
reactor->object = reactor_object;
reactor->max_event_num = max_event_num;
reactor_object->events = sw_calloc(max_event_num, sizeof(struct epoll_event));
if (reactor_object->events == NULL)
{
swWarn("malloc[1] failed.");
sw_free(reactor_object);
return SW_ERR;
}
//epoll create
reactor_object->epfd = epoll_create(512);
if (reactor_object->epfd < 0)
{
swWarn("epoll_create failed. Error: %s[%d]", strerror(errno), errno);
sw_free(reactor_object);
return SW_ERR;
}
//binding method
reactor->add = swReactorEpoll_add;
reactor->set = swReactorEpoll_set;
reactor->del = swReactorEpoll_del;
reactor->wait = swReactorEpoll_wait;
reactor->free = swReactorEpoll_free;
return SW_OK;
}
Epoll
添加监听
swReactorEpoll_event_set
函数用于转化可读(SW_EVENT_READ
)、可写(SW_EVENT_WRITE
)的状态为epoll
函数可用的EPOLLIN
、EPOLLOUT
、EPOLLERR
static sw_inline int swReactorEpoll_event_set(int fdtype)
{
uint32_t flag = 0;
if (swReactor_event_read(fdtype))
{
flag |= EPOLLIN;
}
if (swReactor_event_write(fdtype))
{
flag |= EPOLLOUT;
}
if (swReactor_event_error(fdtype))
{
//flag |= (EPOLLRDHUP);
flag |= (EPOLLRDHUP | EPOLLHUP | EPOLLERR);
}
return flag;
}
swReactorEpoll_add
函数用于为reactor
添加新的文件描述符进行监控- 添加
fd
最为重要的的是利用epoll_ctl
函数的EPOLL_CTL_ADD
命令。为了能够更为简便在调用epoll_wait
后获取fd
的类型,并不会仅仅向epoll_ctl
函数添加fd
,而是会添加swFd
类型,该数据结构中包含文件描述符和文件类型。 swReactor_add
函数用于更新reactor->socket_list
的fdtype
与events
- 最后需要自增
event_num
的数值
typedef struct _swFd
{
uint32_t fd;
uint32_t fdtype;
} swFd;
static int swReactorEpoll_add(swReactor *reactor, int fd, int fdtype)
{
swReactorEpoll *object = reactor->object;
struct epoll_event e;
swFd fd_;
bzero(&e, sizeof(struct epoll_event));
fd_.fd = fd;
fd_.fdtype = swReactor_fdtype(fdtype);
e.events = swReactorEpoll_event_set(fdtype);
swReactor_add(reactor, fd, fdtype);
memcpy(&(e.data.u64), &fd_, sizeof(fd_));
if (epoll_ctl(object->epfd, EPOLL_CTL_ADD, fd, &e) < 0)
{
swSysError("add events[fd=%d#%d, type=%d, events=%d] failed.", fd, reactor->id, fd_.fdtype, e.events);
swReactor_del(reactor, fd);
return SW_ERR;
}
swTraceLog(SW_TRACE_EVENT, "add event[reactor_id=%d, fd=%d, events=%d]", reactor->id, fd, swReactor_events(fdtype));
reactor->event_num++;
return SW_OK;
}
static sw_inline void swReactor_add(swReactor *reactor, int fd, int type)
{
swConnection *socket = swReactor_get(reactor, fd);
socket->fdtype = swReactor_fdtype(type);
socket->events = swReactor_events(type);
socket->removed = 0;
}
Epoll
修改监听
- 修改监听主要调用
epoll_ctl
的EPOLL_CTL_MOD
命令
static int swReactorEpoll_set(swReactor *reactor, int fd, int fdtype)
{
swReactorEpoll *object = reactor->object;
swFd fd_;
struct epoll_event e;
int ret;
bzero(&e, sizeof(struct epoll_event));
e.events = swReactorEpoll_event_set(fdtype);
if (e.events & EPOLLOUT)
{
assert(fd > 2);
}
fd_.fd = fd;
fd_.fdtype = swReactor_fdtype(fdtype);
memcpy(&(e.data.u64), &fd_, sizeof(fd_));
ret = epoll_ctl(object->epfd, EPOLL_CTL_MOD, fd, &e);
if (ret < 0)
{
swSysError("reactor#%d->set(fd=%d|type=%d|events=%d) failed.", reactor->id, fd, fd_.fdtype, e.events);
return SW_ERR;
}
swTraceLog(SW_TRACE_EVENT, "set event[reactor_id=%d, fd=%d, events=%d]", reactor->id, fd, swReactor_events(fdtype));
//execute parent method
swReactor_set(reactor, fd, fdtype);
return SW_OK;
}
Epoll
删除监听
- 修改监听主要调用
epoll_ctl
的EPOLL_CTL_DEL
命令 - 最后需要更新
event_num
static int swReactorEpoll_del(swReactor *reactor, int fd)
{
swReactorEpoll *object = reactor->object;
if (epoll_ctl(object->epfd, EPOLL_CTL_DEL, fd, NULL) < 0)
{
swSysError("epoll remove fd[%d#%d] failed.", fd, reactor->id);
return SW_ERR;
}
swTraceLog(SW_TRACE_REACTOR, "remove event[reactor_id=%d|fd=%d]", reactor->id, fd);
reactor->event_num = reactor->event_num <= 0 ? 0 : reactor->event_num - 1;
swReactor_del(reactor, fd);
return SW_OK;
}
Epoll
监听等待就绪
swReactorEpoll_wait
是reactor
的核心,该函数最重要的就是调用epoll_wait
- 首先需要通过
timeo
参数设置msec
,利用object->events
设置events
epoll_wait
函数返回之后,如果n<0
,那么需要先检查erron
,如果是EINTR
,那么说明有信号触发,此时需要进行信号的回调函数,然后再继续事件循环。如果不是EINTR
,那么就要返回错误,结束事件循环- 如果
n == 0
,一般是由于epoll_wait
已超时,此时需要调用超时回调函数 - 如果
n > 0
,那么就要从events
中取出已经就绪的swFd
对象,并利用该对象的值初始化event
- 接下来就要检查
events[i].events
的值,来判断具体是读就绪、写就绪还是发生了错误,值得注意的是EPOLLRDHUP
事件,此事件代表着对端断开连接,这个是linux
自从2.6.17
的新特性 - 利用
swReactor_getHandle
函数取出对应的文件描述符类型的事件回调函数 - 事件循环的最后调用
onFinish
函数 - 如果设置了
once
,说明此reactor
只会循环一次,立即退出;否则,继续事件循环
typedef struct _swEvent
{
int fd;
int16_t from_id;
uint8_t type;
swConnection *socket;
} swEvent;
static int swReactorEpoll_wait(swReactor *reactor, struct timeval *timeo)
{
swEvent event;
swReactorEpoll *object = reactor->object;
swReactor_handle handle;
int i, n, ret, msec;
int reactor_id = reactor->id;
int epoll_fd = object->epfd;
int max_event_num = reactor->max_event_num;
struct epoll_event *events = object->events;
if (reactor->timeout_msec == 0)
{
if (timeo == NULL)
{
reactor->timeout_msec = -1;
}
else
{
reactor->timeout_msec = timeo->tv_sec * 1000 + timeo->tv_usec / 1000;
}
}
reactor->start = 1;
while (reactor->running > 0)
{
if (reactor->onBegin != NULL)
{
reactor->onBegin(reactor);
}
msec = reactor->timeout_msec;
n = epoll_wait(epoll_fd, events, max_event_num, msec);
if (n < 0)
{
if (swReactor_error(reactor) < 0)
{
swWarn("[Reactor#%d] epoll_wait failed. Error: %s[%d]", reactor_id, strerror(errno), errno);
return SW_ERR;
}
else
{
continue;
}
}
else if (n == 0)
{
if (reactor->onTimeout != NULL)
{
reactor->onTimeout(reactor);
}
continue;
}
for (i = 0; i < n; i++)
{
event.fd = events[i].data.u64;
event.from_id = reactor_id;
event.type = events[i].data.u64 >> 32;
event.socket = swReactor_get(reactor, event.fd);
//read
if ((events[i].events & EPOLLIN) && !event.socket->removed)
{
handle = swReactor_getHandle(reactor, SW_EVENT_READ, event.type);
ret = handle(reactor, &event);
if (ret < 0)
{
swSysError("EPOLLIN handle failed. fd=%d.", event.fd);
}
}
//write
if ((events[i].events & EPOLLOUT) && !event.socket->removed)
{
handle = swReactor_getHandle(reactor, SW_EVENT_WRITE, event.type);
ret = handle(reactor, &event);
if (ret < 0)
{
swSysError("EPOLLOUT handle failed. fd=%d.", event.fd);
}
}
//error
#ifndef NO_EPOLLRDHUP
if ((events[i].events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)) && !event.socket->removed)
#else
if ((events[i].events & (EPOLLERR | EPOLLHUP)) && !event.socket->removed)
#endif
{
//ignore ERR and HUP, because event is already processed at IN and OUT handler.
if ((events[i].events & EPOLLIN) || (events[i].events & EPOLLOUT))
{
continue;
}
handle = swReactor_getHandle(reactor, SW_EVENT_ERROR, event.type);
ret = handle(reactor, &event);
if (ret < 0)
{
swSysError("EPOLLERR handle failed. fd=%d.", event.fd);
}
}
}
if (reactor->onFinish != NULL)
{
reactor->onFinish(reactor);
}
if (reactor->once)
{
break;
}
}
return 0;
}
static sw_inline int swReactor_error(swReactor *reactor)
{
switch (errno)
{
case EINTR:
if (reactor->singal_no)
{
swSignal_callback(reactor->singal_no);
reactor->singal_no = 0;
}
return SW_OK;
}
return SW_ERR;
}
static sw_inline swReactor_handle swReactor_getHandle(swReactor *reactor, int event_type, int fdtype)
{
if (event_type == SW_EVENT_WRITE)
{
return (reactor->write_handle[fdtype] != NULL) ? reactor->write_handle[fdtype] : reactor->handle[SW_FD_WRITE];
}
else if (event_type == SW_EVENT_ERROR)
{
return (reactor->error_handle[fdtype] != NULL) ? reactor->error_handle[fdtype] : reactor->handle[SW_FD_CLOSE];
}
return reactor->handle[fdtype];
}
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Zepto源码学习Event模块
- NodeJS Cluster模块源码学习
- NodeJS Events模块源码学习
- 试读angular源码第四章:angular模块及JIT编译模块
- 对公司内部某个模块某个源码审计
- 比特币源码分析:txdb 模块(三)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Swift编程权威指南(第2版)
[美] Matthew Mathias、[美] John Gallagher / 陈晓亮 / 人民邮电出版社 / 2017-6 / 89.00元
Big Nerd Ranch是美国一家专业的移动开发技术培训机构,本书是其培训教材。书中系统讲解了在iOS和macOS平台上,使用苹果的Swift语言开发iPhone、iPad和Mac应用的基本概念和编程技巧。主要围绕使用Swift语言进行iOS和macOS开发,结合大量代码示例,教会读者利用高级iOS和macOS特性开发真实的应用。一起来看看 《Swift编程权威指南(第2版)》 这本书的介绍吧!
RGB CMYK 转换工具
RGB CMYK 互转工具
HEX CMYK 转换工具
HEX CMYK 互转工具