内容简介:这篇文章主要介绍了Python cookbook(数据结构与算法)找出序列中出现次数最多的元素算法,涉及Python collections模块中的Counter类相关使用技巧与操作注意事项,需要的朋友可以参考下
本文实例讲述了 Python 找出序列中出现次数最多的元素。分享给大家供大家参考,具体如下:
问题:找出一个元素序列中出现次数最多的元素是什么
解决方案:collections模块中的Counter类正是为此类问题所设计的。它的一个非常方便的most_common()
方法直接告诉你答案。
# Determine the most common words in a list words = [ 'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes', 'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the', 'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into', 'my', 'eyes', "you're", 'under' ] from collections import Counter word_counts = Counter(words) top_three = word_counts.most_common(3) print(top_three) # outputs [('eyes', 8), ('the', 5), ('look', 4)] # Example of merging in more words morewords = ['why','are','you','not','looking','in','my','eyes'] word_counts.update(morewords) #使用update()增加计数 print(word_counts.most_common(3))
>>> ================================ RESTART ================================ >>> [('eyes', 8), ('the', 5), ('look', 4)] [('eyes', 9), ('the', 5), ('my', 4)] >>>
在底层实现中,Counter是一个字典,在元素和它们出现的次数间做了映射。
>>> word_counts Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1}) >>> word_counts.most_common(3) #top_three [('eyes', 9), ('the', 5), ('my', 4)] >>> word_counts['not'] 2 >>> word_counts['eyes'] 9 >>> word_counts['eyes']+1 10 >>> word_counts Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1}) >>> word_counts['eyes']=word_counts['eyes']+1 #手动增加元素计数 >>> word_counts Counter({'eyes': 10, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1}) >>>
增加元素出现次数可以通过手动进行增加,也可以借助update()
方法;
另外,Counter对象另一个特性是它们可以同各种数学运算操作结合起来使用:
>>> a=Counter(words) >>> a Counter({'eyes': 8, 'the': 5, 'look': 4, 'my': 3, 'into': 3, 'around': 2, 'under': 1, "you're": 1, 'not': 1, "don't": 1}) >>> b=Counter(morewords) >>> b Counter({'not': 1, 'my': 1, 'in': 1, 'you': 1, 'looking': 1, 'are': 1, 'eyes': 1, 'why': 1}) >>> c=a+b >>> c Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'in': 1, 'why': 1}) >>> # substract counts >>> d=a-b >>> d Counter({'eyes': 7, 'the': 5, 'look': 4, 'into': 3, 'my': 2, 'around': 2, 'under': 1, "you're": 1, "don't": 1}) >>>
当面对任何需要对数据制表或计数的问题时,Counter对象都是你手边的得力工具。比起利用字典自己手写算法,更应采用该方式完成任务。
(代码摘自《Python Cookbook》)
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 算法与数据结构之递归算法
- Python 数据结构与算法 —— 初识算法
- js实现数据结构及算法之排序算法
- 数据结构和算法面试题系列—递归算法总结
- 数据结构和算法面试题系列—随机算法总结
- 数据结构与算法——常用排序算法及其Java实现
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
中国网络媒体的第一个十年
彭兰 / 清华大学出版社 / 2005-7 / 35.00元
此书对中国网络媒体的第一个十年这一重要的历史阶段首次进行了全景式、全程式的历史记录,并进行了全面深入的研究,在一定程度上填补了中国网络媒体发展史宏观研究方面的空白。对于网络新闻传播的研究,以及当代中国媒体发展的研究.具有重要的意义。 ——方汉奇 图书目录 绪论 1 第一章 投石问路:中国网络媒体萌芽(1994一1995年) 9 第一节 从实验室走向市场:互联网兴起 10 ......一起来看看 《中国网络媒体的第一个十年》 这本书的介绍吧!