推荐算法_CIKM-2019-AnalytiCup 冠军源码解读_2

栏目: IT技术 · 发布时间: 4年前

内容简介:最近在为机器学习结合推荐算法的优化方法和数据来源想办法。抱着学习的态度继续解读19-AnalytiCup的冠军源码。第一部分itemcf解读的连接:第二、三部分主要是特征提取和排序。在这篇博客中将作展开。

最近在为机器学习结合推荐算法的优化方法和数据来源想办法。抱着学习的态度继续解读19-AnalytiCup的冠军源码。

第一部分itemcf解读的连接: https://www.cnblogs.com/missouter/p/12701875.html

第二、三部分主要是特征提取和排序。在这篇博客中将作展开。

1、generate_static_features.ipynb 标题简洁明了 提取静态特征

import pandas as pd
import numpy as np

def reduce_mem_usage(df):
    """ iterate through all the columns of a dataframe and modify the data type
        to reduce memory usage.        
    """
    start_mem = df.memory_usage().sum() 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')

    end_mem = df.memory_usage().sum() 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    
    return df

def load_data(path):
    user = reduce_mem_usage(pd.read_csv(path + 'user.csv',header=None))
    item = reduce_mem_usage(pd.read_csv(path + 'item.csv',header=None))
    data = pd.read_csv(path + 'user_behavior.csv',header=None)

    data.columns = ['userID','itemID','behavior','timestamp']
    data['day'] = data['timestamp'] // 86400
    data['hour'] = data['timestamp'] // 3600 % 24
    
    ## 生成behavior的onehot
    for i in ['pv','fav','cart','buy']:
        data[i] = 0
        data.loc[data['behavior'] == i, i] = 1

    ## 生成behavior的加权
    
    data['day_hour'] = data['day'] + data['hour'] / float(24)
    data.loc[data['behavior']=='pv','behavior'] = 1
    data.loc[data['behavior']=='fav','behavior'] = 2
    data.loc[data['behavior']=='cart','behavior'] = 3
    data.loc[data['behavior']=='buy','behavior'] = 1
    max_day = max(data['day'])
    min_day = min(data['day'])
    data['behavior'] = (1 - (max_day-data['day_hour']+2)/(max_day-min_day+2)) * data['behavior'] 

    item.columns = ['itemID','category','shop','brand']
    user.columns = ['userID','sex','age','ability']
    
    data = reduce_mem_usage(data)

    data = pd.merge(left=data, right=item, on='itemID',how='left')
    data = pd.merge(left=data, right=user, on='userID',how='left')

    return user, item, data
    

读取数据内存优化这块已经是老生常谈。loaddata()函数顺便完成了对各类行为权重的转换,值得一提的是购买权重被分配为1.而浏览、收藏等行为则被分配为1、2、3;目的是为了不向顾客推荐已购买过的商品。

主函数部分:

path = '../ECommAI_EUIR_round2_train_20190816/'

user, item, data = load_data(path = path)

for count_feature in ['itemID', 'shop', 'category','brand']:
    data[['behavior', count_feature]].groupby(count_feature, as_index=False).agg(
        {'behavior':'count'}).rename(columns={'behavior':count_feature + '_count'}).to_csv(str(count_feature)+'_count.csv', index=False)

for count_feature in ['itemID', 'shop', 'category','brand']:
    data[['behavior', count_feature]].groupby(count_feature, as_index=False).agg(
        {'behavior':'sum'}).rename(columns={'behavior':count_feature + '_sum'}).to_csv(str(count_feature)+'_sum.csv', index=False)

确定路径后,对item、shop、category与brand的特征进行提取。使用groupby().agg()分别提取用户行为权重的次数与累加和(agg参数'count'与'sum')。生成文件分别储存于csv文件中。

temp = data[['behavior','category']].groupby('category', as_index=False).agg({'behavior': ['median','std','skew']})
temp.columns = ['category','category_median','category_std','category_skew']

temp.to_csv('category_higher.csv',index=False)

temp = data[['behavior','itemID']].groupby('itemID', as_index=False).agg({'behavior': ['median','std','skew']})
temp.columns = ['itemID','itemID_median','itemID_std','itemID_skew']

temp.to_csv('itemID_higher.csv',index=False)

上述代码使用groupby().agg()提取每个单独category、单独id的行为中值、标准差与偏斜。

data['age'] = data['age'] // 10
train = data[data['day'] < 15]

for count_feature in ['sex','ability','age']:
    data[['behavior','itemID',count_feature]].groupby(['itemID', count_feature], as_index=False).agg(
        {'behavior': 'count'}).rename(columns={'behavior':'user_to_'
                                               + count_feature + '_count'}).to_csv('item_to_' + str(count_feature)+'_count_online.csv', index=False)

这段以每个用户的基本数据(性别、对推荐系统的影响力、年龄)为基准,对其对应的行为次数进行特征提取。

itemcount = pd.read_csv('itemID_count.csv')

temp = pd.merge(left=item, right=itemcount, how='left', on='itemID')

item_rank = []
for eachcat in temp.groupby('category'):
    each_df = eachcat[1].sort_values('itemID_count', ascending=False).reset_index(drop=True)
    each_df['rank'] = each_df.index + 1
    lenth = each_df.shape[0]
    each_df['rank_percent'] = (each_df.index + 1) / lenth
    item_rank.append(each_df[['itemID','rank','rank_percent']])

使用merge对item与item的行为次数进行拼接。使用groupby按照商品类别进行分类。每个类别内商品按照商品的行为次数进行排序,算出商品的类内排名与排名百分比,

item_rank = pd.concat(item_rank, sort=False)

item_rank.to_csv('item_rank.csv',index=False)

将生成的类内 排序 使用concat()去除多余标签,写入文件。

def unique_count(x):
    return len(set(x))

cat1 = item.groupby('category',as_index=False).agg({'itemID': unique_count}).rename(columns={'itemID':'itemnum_undercat'})

cat2 = item.groupby('category',as_index=False).agg({'brand': unique_count}).rename(columns={'brand':'brandnum_undercat'})

cat3 = item.groupby('category',as_index=False).agg({'shop': unique_count}).rename(columns={'shop':'shopnum_undercat'})

pd.concat([cat1, cat2[['brandnum_undercat']], cat3[['shopnum_undercat']]], axis=1).to_csv('category_lower.csv',index=False)

这里先定义一个统计集合内元素数量的函数,应用在agg()中作为参数,用groupby以类别进行分类,统计每个类别中商品、品牌与商家的数量,写入csv文件。

2、generate_dynamic_feature.ipynb  提取动态特征

import pandas as pd
import numpy as np

def reduce_mem_usage(df):
    """ iterate through all the columns of a dataframe and modify the data type
        to reduce memory usage.        
    """
    start_mem = df.memory_usage().sum() 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')

    end_mem = df.memory_usage().sum() 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    
    return df

def load_data(path):
    user = reduce_mem_usage(pd.read_csv(path + 'user.csv',header=None))
    item = reduce_mem_usage(pd.read_csv(path + 'item.csv',header=None))
    data = pd.read_csv(path + 'user_behavior.csv',header=None)

    data.columns = ['userID','itemID','behavior','timestamp']
    data['day'] = data['timestamp'] // 86400
    data['hour'] = data['timestamp'] // 3600 % 24
    
    ## 生成behavior的onehot
    for i in ['pv','fav','cart','buy']:
        data[i] = 0
        data.loc[data['behavior'] == i, i] = 1

    ## 生成behavior的加权
    
    data['day_hour'] = data['day'] + data['hour'] / float(24)
    data.loc[data['behavior']=='pv','behavior'] = 1
    data.loc[data['behavior']=='fav','behavior'] = 2
    data.loc[data['behavior']=='cart','behavior'] = 3
    data.loc[data['behavior']=='buy','behavior'] = 1
    max_day = max(data['day'])
    min_day = min(data['day'])
    data['behavior'] = (1 - (max_day-data['day_hour']+2)/(max_day-min_day+2)) * data['behavior'] 

    item.columns = ['itemID','category','shop','brand']
    user.columns = ['userID','sex','age','ability']
    
    data = reduce_mem_usage(data)

    data = pd.merge(left=data, right=item, on='itemID',how='left')
    data = pd.merge(left=data, right=user, on='userID',how='left')

    return user, item, data
    

与静态特征提取一样。

主函数部分:

#path = '..\\data\\'
path = '../ECommAI_EUIR_round2_train_20190816/'
user, item, data = load_data(path = path)

train = data[data['day'] < 15]

online_features = []
for count_feature in ['category','shop','brand']:
    train[['behavior','userID',count_feature]].groupby(['userID', count_feature], as_index=False).agg(
        {'behavior': 'count'}).rename(columns={'behavior':'user_to_'
                                               + count_feature + '_count'}).to_csv('user_to_' + str(count_feature)+'_count.csv', index=False)
for count_feature in ['category','shop','brand']:
    train[['behavior','userID',count_feature]].groupby(['userID', count_feature], as_index=False).agg(
        {'behavior': 'sum'}).rename(columns={'behavior':'user_to_' 
                                             + count_feature + '_sum'}).to_csv('user_to_' + str(count_feature)+'_sum.csv', index=False)

for count_feature in ['category','shop','brand']:
    for behavior_type in ['pv','fav','cart','buy']:
        train[[behavior_type,'userID',count_feature]].groupby(['userID', count_feature], as_index=False).agg(
            {behavior_type: 'sum'}).rename(columns={behavior_type:'user_to_'
                                                   + count_feature + '_count_' + behavior_type}).to_csv('user_to_' + str(count_feature) + '_count_' + behavior_type + '.csv', index=False)

将过去十五天的用户数据进行特征提取。同第一个文件一样的特征提取方式,只不过第二步提取的主体是用户。分别对用户与其产生行为的类别、商家与品牌进行次数、行为加权的特征提取。再对用户的四种行为类型与类别、商家与品牌进行累加和(次数?但它agg参数使用了sum)提取。最后写入csv文件。

yestday = data[data['day'] == 14]

for count_feature in ['category','shop','brand']:
    yestday[['behavior','userID',count_feature]].groupby(['userID', count_feature], as_index=False).agg(
        {'behavior': 'count'}).rename(columns={'behavior':'user_to_'
                                               + count_feature + '_count_yestday'}).to_csv('user_to_' + str(count_feature)+'_count_yestday.csv', index=False)

for count_feature in ['category','shop','brand']:
    for behavior_type in ['pv','fav','cart','buy']:
        yestday[[behavior_type,'userID',count_feature]].groupby(['userID', count_feature], as_index=False).agg(
            {behavior_type: 'sum'}).rename(columns={behavior_type:'user_to_'
                                                   + count_feature + '_count_' + behavior_type+'_yestday'}).to_csv('user_to_' + str(count_feature) + '_count_' + behavior_type + '_yestday.csv', index=False)

单独对昨天的用户数据进行提取,针对行为次数与类别写入csv文件。

a5days = data[(data['day'] > 15 - 5) & (data['day'] < 15)]

for count_feature in ['category','shop','brand']:
    a5days[['behavior','userID',count_feature]].groupby(['userID', count_feature], as_index=False).agg(
        {'behavior': 'count'}).rename(columns={'behavior':'user_to_'
                                               + count_feature + '_count_5days'}).to_csv('user_to_' + str(count_feature)+'_count_5days.csv', index=False)

for count_feature in ['category','shop','brand']:
    for behavior_type in ['pv','fav','cart','buy']:
        a5days[[behavior_type,'userID',count_feature]].groupby(['userID', count_feature], as_index=False).agg(
            {behavior_type: 'sum'}).rename(columns={behavior_type:'user_to_'
                                                   + count_feature + '_count_' + behavior_type+'_5days'}).to_csv('user_to_' + str(count_feature) + '_count_' + behavior_type + '_5days.csv', index=False)

针对近五天的用户数据进行提取,针对行为次数与类别写入csv文件。

start_timestamp  = max(data[data['day'] < 15]['timestamp'])

time_features = []
test = data[data['day'] < 15]
for time_feature in ['shop', 'category','brand']:
    time_features.append(test[['last_time','userID',time_feature,'day']].groupby(['userID',time_feature], as_index=False).agg({'last_time': 'min', 'day':'max'}).rename(columns={'last_time': 'user_to_'+ time_feature + '_lasttime', 'day':'user_to_'+ time_feature + '_lastday'}))

for f in time_features:
    f.to_csv(str(f.columns[2])+'.csv', index=False)

for f in time_features:
    print(str(f.columns[2])+'.csv')

对每个用户访问商户、品牌与类别的最新时间进行提取,写入csv中。

for count_feature in ['sex','ability','age']:
    train[['behavior','itemID',count_feature]].groupby(['itemID', count_feature], as_index=False).agg(
        {'behavior': 'count'}).rename(columns={'behavior':'user_to_'+ count_feature + '_count'}).to_csv('item_to_' + str(count_feature)+'_count.csv', index=False)

最后以每个用户的基本数据(性别、对推荐系统的影响力、年龄)为基准,对其对应的行为次数进行特征提取,生成一个与第一步对应的线下特征文件。

3、generate_time_feature.ipynb 提取时间特征

def reduce_mem_usage(df):
    """ iterate through all the columns of a dataframe and modify the data type
        to reduce memory usage.        
    """
    start_mem = df.memory_usage().sum() 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')

    end_mem = df.memory_usage().sum() 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    
    return df

def load_data(path):
    user = reduce_mem_usage(pd.read_csv(path + 'user.csv',header=None))
    item = reduce_mem_usage(pd.read_csv(path + 'item.csv',header=None))
    data = pd.read_csv(path + 'user_behavior.csv',header=None)

    data.columns = ['userID','itemID','behavior','timestamp']
    data['day'] = data['timestamp'] // 86400
    data['hour'] = data['timestamp'] // 3600 % 24
    
    ## 生成behavior的onehot
    for i in ['pv','fav','cart','buy']:
        data[i] = 0
        data.loc[data['behavior'] == i, i] = 1

    ## 生成behavior的加权
    
    data['day_hour'] = data['day'] + data['hour'] / float(24)
    data.loc[data['behavior']=='pv','behavior'] = 1
    data.loc[data['behavior']=='fav','behavior'] = 2
    data.loc[data['behavior']=='cart','behavior'] = 3
    data.loc[data['behavior']=='buy','behavior'] = 1
    max_day = max(data['day'])
    min_day = min(data['day'])
    data['behavior'] = (1 - (max_day-data['day_hour']+2)/(max_day-min_day+2)) * data['behavior'] 

    item.columns = ['itemID','category','shop','brand']
    user.columns = ['userID','sex','age','ability']
    
    data = reduce_mem_usage(data)

    data = pd.merge(left=data, right=item, on='itemID',how='left')
    data = pd.merge(left=data, right=user, on='userID',how='left')

    return user, item, data
    

一样的读取步骤。

path = '../ECommAI_EUIR_round2_train_20190816/'
user, item, data = load_data(path = path)

train = data[data['day'] < 15]

start_timestamp  = max(train['timestamp'])

train['last_time'] = start_timestamp - train['timestamp']

timefeatures = []

for time_feature in ['itemID', 'shop', 'category','brand']:
    name = time_feature + '_last_time_underline.csv'
    tf = train[['last_time', time_feature]].groupby(
        time_feature, as_index=False).agg({'last_time':'min'}).rename(columns={'last_time': time_feature + 'last_time'})
    tf[time_feature + 'last_time_hour_ed'] = tf[time_feature + 'last_time'] // 3600 % 24
    timefeatures.append((name, tf))

for f in timefeatures:
    f[1].to_csv(f[0], index=False)

这里作者演示了一种提取某个商品/店铺/类别/品牌 距离第15、16天的最后一次点击的方法。通过计算最大时间戳减去每个访问的时间戳得到last_time,通过groupby()分类,agg()提取最小的last_time列得到最后一次点击的商品。

至此,特征提取的源码分析就结束了。这部分的代码给我的感觉是groupby().agg()使用的非常熟练老道,特征工程的构建有很多值得学习的地方。

源码直接跑起来会出现一些意想不到的bug,我们非常感谢原作者薛传雨提供的帮助。


以上所述就是小编给大家介绍的《推荐算法_CIKM-2019-AnalytiCup 冠军源码解读_2》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

JavaScript王者归来

JavaScript王者归来

月影 / 清华大学出版社 / 2008-7 / 86.00元

你手中的这本《JavaScript王者归来》不仅是一本传播知识的书,更是一本求道的书。 本书分为五个部分循序渐进地与读者讨论了JavaScript的方方面面,从简单的语言基础到丰富的实际应用再到深入剖析语言本质的高级话题,字里行间包含着作者多年工作中对JavaScript实践乃至程序设计思想的深入思考和总结。 本书揭开了JavaScript的面纱,绕过误解和虚幻的表象,引领你探索程序王......一起来看看 《JavaScript王者归来》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器