Time Series Analysis: Creating Synthetic Datasets

栏目: IT技术 · 发布时间: 5年前

内容简介:How to create time series datasets with different patternsTime series is a sequence of values ordered in time. We may encounter time series data in pretty much any domain. Weather forecasts, exchange rates, sales data, sound waves are just a few examples.

Time Series Analysis: Creating Synthetic Datasets

How to create time series datasets with different patterns

Photo by NeONBRAND on Unsplash

Time series is a sequence of values ordered in time. We may encounter time series data in pretty much any domain. Weather forecasts, exchange rates, sales data, sound waves are just a few examples. Time series can be any type of data that is represented as an ordered sequence.

In an earlier post , I covered the basic concepts in time series analysis. In this post, we will create time series data with different patterns. One advantage of synthetic datasets is that we can measure the performance of a model and have an idea about how it will perform with real life data.

The common patterns observed in a time series are:

  • Trend: An overall upward or downward direction.
  • Seasonality: Patterns that repeat observed or predictable intervals.
  • White noise: Time series does not always follow a pattern or include seasonality. Some processes produce just random data. This kind of time series is called white noise.

Note: The patterns are not always smooth and usually include some kind of noise . Furthermore, a time series may include a combination of different patterns.

We will use numpy to generate arrays of values and matplotlib to plot the series. Let’s start with importing the required libraries:

import numpy as np
import matplotlib.pyplot as plt%matplotlib inline

We can define a function that takes the arrays as input and create plots:

def plot_time_series(time, values, label):
 plt.figure(figsize=(10,6))
 plt.plot(time, values)
 plt.xlabel("Time", fontsize=20)
 plt.ylabel("Value", fontsize=20)
 plt.title(label, fontsize=20)
 plt.grid(True)

Trend in Time Series

The first plot is the simplest one which is a time series with an upward trend. We create arrays for time and values with a slope. Then pass these arrays as arguments to our function:

time = np.arange(100)
values = time*0.4plot_time_series(time, values, "Upward Trend")

以上所述就是小编给大家介绍的《Time Series Analysis: Creating Synthetic Datasets》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

SEO实战密码

SEO实战密码

昝辉Zac / 电子工业出版社 / 2015-7 / 69.00元

本书是畅销书升级版,详细和系统地介绍了正规、有效的SEO实战技术,包括为什么要做SEO、搜索引擎工作原理、关键词研究、网站结构优化、外部链接建设、SEO效果监测及策略修改,SEO作弊及惩罚、排名因素列表、常用的SEO工具、SEO项目管理中需要注意的问题等专题,最后提供了一个非常详细的案例供读者参考。 第3版增加了移动搜索优化、APP排名优化、百度2015年排名因素调查结果等新内容,并对前两版......一起来看看 《SEO实战密码》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具